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ABSTRACT

Matchings and perfect matchings have received considerable attention in graph theory as well as in other
related domains (such as, but not limited to, algorithms and optimization). There still remain many open
problems — such as Barnette’s conjecture, Berge-Fulkerson conjecture, and so on — due to which
it continues to remain an active area of research. For problems pertaining to perfect matchings, it is
well-known that it suffices to solve them for matching covered graphs (that is, those connected graphs
wherein each edge belongs to some perfect matching). The theory of matching covered graphs, despite
its relatively recent emergence, presents an exciting landscape filled with captivating discoveries, elegant
proofs, and unexpected applications. In the following paragraph, we briefly summarize some of the key
developments in this field without going into the mathematical details.

Kotzig [14], in 1959, introduced the notion of canonical partition of a matching covered graph that
uniquely partitions its vertex set into its maximal barriers. In 1987, László Lovász [18] established the
uniqueness of the tight cut decomposition procedure; as per this, every matching covered graph may be
uniquely decomposed into a list of special matching covered graphs called “bricks” (nonbipartite) and
“braces” (bipartite). The key contribution of this landmark paper was to solve the Matching Lattice
Problem. Lovász and Plummer, in 1975, introduced the well-known ear decomposition of matching
covered graphs; see “Matching Theory" [17]. This notion of ear decomposition was further refined to
that of an optimal ear decomposition by Carvalho, Lucchesi and Murty [9]. Furthermore, in their seminal
paper, the same authors [2] introduced the dependency relationship in matching covered graphs that is
closely tied with the ear decomposition theory. In 2001, McCuaig [20] established a generation method
for all braces; analogously, Norine and Thomas [23], in 2007, established a generation method for all
bricks. Both of these generation procedures may be viewed as a synthesis of the ear decomposition and
tight cut decomposition theories, and have found applications in solving some of the major problems
in matching theory — such as Polya’s Permanent Problem [21]. All of these results — pertaining to
decompositions, generation methods and related concepts — have played indispensable roles in the
advancement of matching theory, and continue to do so.

It is worth noting that all of the notions discussed above are computable in poly-time.
Despite this, there are no publicly available implementations. It is for this reason that
researchers in this area are at a loss, and are required to implement parts of this theory
by themselves. Currently, in SageMath, a few existing matching-theoretic algorithms for
general graphs have been put within the module “Undirected graphs” — either under the
submodule “Algorithmically hard stuff” (for instance: matching_polynomial()) or under
“Leftovers” (for instance: has_perfect_matching(), matching(), is_factor_critical() and
perfect_matchings()), whereas that concerning the bipartite graphs have been put within
the module “Bipartite Graphs” (for instance: matching(), matching_polynomial() and
perfect_matchings()). Ergo, we propose to implement efficient algorithms pertaining to the results
and concepts discussed in the above paragraph in SageMath, and to make all of these available freely
to students, educators as well as researchers all across the world. This proposal has been inspired by
the book of Lucchesi and Murty — “Perfect Matchings: a theory of matching covered graphs" [19].
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1 Introduction
All the graphs considered in this proposal are undirected and loopless. But, they might contain multiple
edges. For graph theoretical notation and terminology, the main resources that are essentially followed,
are – Graph Theory (2008, [1]) by Bondy and Murty. This proposal assumes that the reader has the basic
knowledge in graph theory. The reader is requested to refer to the equivalent papers in case they require
an in depth overview of the concerning concepts.

2 Existing Functions in SageMath
This section identifies and explicitly lists out all the existing functions (as of June 26, 2024) on SageMath
— pertaining to the theory of matching covered graphs.

2.1 UNDIRECTED GRAPHS

We have identified the following precisely five algorithms that are listed within the module “Undirected
graphs”, which implements functions and operations involving undirected graphs.

2.1.1 matching_polynomial()
The method matching_polynomial() listed under “Algorithmically hard stuff” computes the matching
polynomial of the graph 𝐺.

matching_polynomial(G, complement=True, name=None)

Computes the matching polynomial of the graph 𝐺. If p(G,k) denotes the number of 𝑘-matchings
(matchings with 𝑘 edges) in 𝐺, then the matching polynomial is defined as [12]:

𝜇(𝑥) =
∑

𝑘⩾0
(−1)𝑘𝑝(𝐺, 𝑘)𝑥𝑛−2𝑘.

INPUT:
• complement – (default: True) whether to use Godsil’s duality theorem to compute the matching

polynomial from that of the graphs complement (see ALGORITHM).
• name – optional string for the variable name in the polynomial

Note

The complement option uses matching polynomials of complete graphs, which are cached. So
if you are crazy enough to try computing the matching polynomial on a graph with millions of
vertices, you might not want to use this option, since it will end up caching millions of polynomials
of degree in the millions.

OUTPUT:
• When value_only=False (default), this method returns an EdgesView containing the edges of a

maximum matching of 𝐺.
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• When value_only=True, this method returns the sum of the weights (default: 1) of the edges of a
maximum matching of 𝐺. The type of the output may vary according to the type of the edge labels
and the algorithm used.

ALGORITHM:
The algorithm used is a recursive one, based on the following observation [12]:

• If 𝑒 is an edge of𝐺, 𝐺′ is the result of deleting the edge 𝑒, and𝐺′′ is the result of deleting each vertex
in 𝑒, then the matching polynomial of 𝐺 is equal to that of 𝐺′ minus that of 𝐺′′. (the algorithm
actually computes the signless matching polynomial, for which the recursion is the same when
one replaces the subtraction by an addition. It is then converted into the matching polynomial and
returned)

Depending on the value of complement, Godsil’s duality theorem [12] can also be used to compute
𝜇(𝑥):

𝜇(𝐺, 𝑥) =
∑

𝑘⩾0
𝑝(𝐺, 𝑘)𝜇(𝐾𝑛−2𝑘, 𝑥)

Where 𝐺 is the complement of 𝐺, and 𝐾𝑛 the complete graph on 𝑛 vertices.

EXAMPLES:

sage: g = graphs.PetersenGraph()
sage: g.matching_polynomial()
x^10 - 15*x^8 + 75*x^6 - 145*x^4 + 90*x^2 - 6
sage: g.matching_polynomial(complement=False)
x^10 - 15*x^8 + 75*x^6 - 145*x^4 + 90*x^2 - 6
sage: g.matching_polynomial(name='tom')
tom^10 - 15*tom^8 + 75*tom^6 - 145*tom^4 + 90*tom^2 - 6
sage: g = Graph()
sage: L = [graphs.RandomGNP(8, .3) for i in range(1, 6)]
sage: prod([h.matching_polynomial() for h in L]) == sum(L, g).matching_polynomial() #

long time (up to 10s on sage.math, 2011)↪

True

2.1.2 has_perfect_matching()
The method has_perfect_matching() listed under “Leftovers” returns whether the graph has a perfect
matching.

has_perfect_matching(algorithm='Edmonds', solver=None, verbose=0, integrality_tolerance)

Returns whether this graph has a perfect matching.

INPUT:
• algorithm – string (default: ‘Edmonds’)

– ‘Edmonds’ uses Edmonds’ algorithm as implemented in NetworkX to find a matching of
maximal cardinality, then check whether this cardinality is half the number of vertices of the
graph.
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– ‘LP_matching’ uses a Linear Program to find a matching of maximal cardinality, then check
whether this cardinality is half the number of vertices of the graph.

– ‘LP’ uses a Linear Program formulation of the perfect matching problem: put a binary
variable 𝑏[𝑒] on each edge 𝑒, and for each vertex 𝑣, require that the sum of the values of
the edges incident to 𝑣 is 1.

• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to
be used. If set to None, the default one is used. For more information on MILP solvers and which
default solver is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet
(only useful when algorithm == ‘LP_matching’ or algorithm == ‘LP’)

• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring;
see MixedIntegerLinearProgram.get_values().

OUTPUT:
A boolean.

EXAMPLES:

sage: graphs.PetersenGraph().has_perfect_matching() # needs networkx
True
sage: graphs.WheelGraph(6).has_perfect_matching() # needs networkx
True
sage: graphs.WheelGraph(5).has_perfect_matching() # needs networkx
False
sage: graphs.PetersenGraph().has_perfect_matching(algorithm="LP_matching")
# needs sage.numerical.mip

True
sage: graphs.WheelGraph(6).has_perfect_matching(algorithm="LP_matching") # needs

sage.numerical.mip↪

True
sage: graphs.WheelGraph(5).has_perfect_matching(algorithm="LP_matching")
False
sage: graphs.PetersenGraph().has_perfect_matching(algorithm="LP_matching")
# needs sage.numerical.mip

True
sage: graphs.WheelGraph(6).has_perfect_matching(algorithm="LP_matching") # needs

sage.numerical.mip↪

True
sage: graphs.WheelGraph(5).has_perfect_matching(algorithm="LP_matching")
False

2.1.3 is_factor_critical()
The method is_factor_critical() listed under “Leftovers” checks whether this graph is
factor-critical.
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is_factor_critical(matching=None, algorithm='Edmonds', solver=None, verbose=0,
integrality_tolerance)↪

Checks whether this graph is factor-critical.
A graph of order 𝑛 is factor-critical if every subgraph of 𝑛 − 1 vertices have a perfect matching,
hence 𝑛 must be odd. See Wikipedia article: Factor-critical graph for more details.
This method implements the algorithm proposed in [15] and we assume that a graph of order one
is factor-critical. The time complexity of the algorithm is linear if a near perfect matching is given
as input (i.e., a matching such that all vertices but one are incident to an edge of the matching).
Otherwise, the time complexity is dominated by the time needed to compute a maximum matching
of the graph.

INPUT:
• matching – (default: None); a near perfect matching of the graph, that is a matching such that all

vertices of the graph but one are incident to an edge of the matching. It can be given using any valid
input format of Graph.
If set to None, a matching is computed using the other parameters.

• algorithm – string (default: ‘Edmonds’); the algorithm to use to compute a maximum matching
of the graph among

– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX,
– ‘LP_matching’ uses a Linear Program to find a matching of maximal cardinality, then check

whether this cardinality is half the number of vertices of the graph.
– ‘LP’ uses a Linear Program formulation of the matching problem.

• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to
be used. If set to None, the default one is used. For more information on MILP solvers and which
default solver is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet
(only useful when algorithm == ‘LP’)

• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring;
see MixedIntegerLinearProgram.get_values().

EXAMPLES:
Odd length cycles and odd cliques of order at least 3 are factor-critical graphs:

sage: [graphs.CycleGraph(2*i + 1).is_factor_critical() for i in range(5)]
# needs networkx

[True, True, True, True, True]
sage: [graphs.CompleteGraph(2*i + 1).is_factor_critical() for i in range(5)] # needs

networkx↪

[True, True, True, True, True]

More generally, every Hamiltonian graph with an odd number of vertices is factor-critical:
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sage: G = graphs.RandomGNP(15, .2)
sage: G.add_path([0..14])
sage; G.add_edge(14, 0)
sage: G.is_hamiltonian()
True
sage: G.is_factor_critical() # needs networkx
True

Friendship graphs are non-Hamiltonian factor-critical graphs:

sage: [graphs.FriendshipGraph(i).is_factor_critical() for i in range(1, 5)] # needs
networkx↪

[True, True, True, True]

Bipartite graphs are not factor-critical:

sage: G = graphs.RandomBipartite(randint(1, 10), randint(1, 10), .5) # needs numpy
sage: G.is_factor_critical() # needs numpy
False

Graphs with even order are not factor critical:

sage: G = graphs.RandomGNP(10, .5)
sage: G.is_factor_critical()
False

One can specify a matching:

sage: F = graphs.FriendshipGraph(4)
sage: M = F.matching() # needs networkx
sage: F.is_factor_critical(matching=M) # needs networkx
True
sage: F.is_factor_critical(matching=Graph(M)) # needs networkx
True

2.1.4 matching()
The method matching() listed under “Leftovers” returns a maximum weighted matching of the graph
represented by the list of its edges.

matching(value_only=False, algorithm='Edmonds', use_edge_labels=False, solver=None,
verbose=0, integrality_tolerance)↪

Returns a maximum weighted matching of the graph represented by the list of its edges.
For more information, see the Wikipedia article: Matching(graph theory).
Given a graph 𝐺 such that each edge 𝑒 has a weight 𝑤𝑒, a maximum matching is a subset 𝑆 of the
edges of 𝐺 of maximum weight such that no two edges of 𝑆 are incident with each other.
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As an optimization problem, it can be expressed as:
Maximize ∑

𝑒 ∈ 𝐺.𝑒𝑑𝑔𝑒𝑠()
𝑤𝑒𝑏𝑒

such that ∑
(𝑢,𝑣) ∈ 𝐺.𝑒𝑑𝑔𝑒𝑠()

𝑏(𝑢,𝑣) ⩽ 1 ∀ 𝑣𝑖 ∈ 𝑉(𝐺)

𝑏𝑥 ∈ {0, 1} ∀ 𝑥 ∈ 𝐸(𝐺)

INPUT:
• value_only – boolean (default: False); when set to True, only the cardinal (or the weight) of the

matching is returned.
• algorithm – string (default: ‘Edmonds’)

– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX,
– ‘LP’ uses a Linear Program formulation of the matching problem.

• use_edge_labels – boolean (default: False)
– when set to True, computes a weighted matching where each edge is weighted by its label (if

an edge has no label, 1 is assumed),
– when set to False, each edge has weight 1.

• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to
be used. If set to None, the default one is used. For more information on MILP solvers and which
default solver is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet
(only useful when algorithm == ‘LP’)

• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring;
see MixedIntegerLinearProgram.get_values().

OUTPUT:
• When value_only=False (default), this method returns an EdgesView containing the edges of a

maximum matching of 𝐺.
• When value_only=True, this method returns the sum of the weights (default: 1) of the edges of a

maximum matching of 𝐺. The type of the output may vary according to the type of the edge labels
and the algorithm used.

ALGORITHM:
The problem is solved using Edmond’s algorithm implemented in NetworkX, or using Linear

Programming depending on the value of algorithm.
EXAMPLES:

Maximum matching in a Pappus Graph:
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sage: g = graphs.PappusGraph()
sage: g.matching(value_only=True) # needs sage.networkx
9

Same test with the Linear Program formulation:

sage: g = graphs.PappusGraph()
g.matching(algorithm="LP", value_only=True) # needs sage.numerical.mip
9

6

7

8

9

10

11

0

1

2

3

4

5
12

13

14
15

16

17

Figure 1: Pappus Graph and its maximum (perfect) matching
— shown in bold red

2.1.5 perfect_matchings()
The method perfect_matchings() listed under “Leftovers” returns an iterator over all perfect matchings
of the graph.

perfect_matchings(labels=False)

Returns an iterator over all perfect matchings of the graph.

INPUT:
• labels – boolean (default: False); when True, the edges in each perfect matching are triples

(containing the label as the third element), otherwise the edges are pairs.
ALGORITHM:

Choose a vertex 𝑣, then recurse through all edges incident to 𝑣, removing one edge at a time whenever
an edge is added to a matching.
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EXAMPLES:

sage: G=graphs.GridGraph([2,3])
sage: for m in G.perfect_matchings():
....: print(sorted(m))
[((0, 0), (0, 1)), ((0, 2), (1, 2)), ((1, 0), (1, 1))]
[((0, 0), (1, 0)), ((0, 1), (0, 2)), ((1, 1), (1, 2))]
[((0, 0), (1, 0)), ((0, 1), (1, 1)), ((0, 2), (1, 2))]

sage: G = graphs.CompleteGraph(4)
sage: for m in G.perfect_matchings(labels=True):
....: print(sorted(m))
[(0, 1, None), (2, 3, None)]
[(0, 2, None), (1, 3, None)]
[(0, 3, None), (1, 2, None)]

sage: G = Graph([[1,-1,'a'], [2,-2, 'b'], [1,-2,'x'], [2,-1,'y']])
sage: sorted(sorted(m) for m in G.perfect_matchings(labels=True))
[[(-2, 1, 'x'), (-1, 2, 'y')], [(-2, 2, 'b'), (-1, 1, 'a')]]

sage: G = graphs.CompleteGraph(8)
sage: mpc = G.matching_polynomial().coefficients(sparse=False)[0] # needs

sage.libs.flint↪

sage: len(list(G.perfect_matchings())) == mpc # needs sage.libs.flint
True

sage: G = graphs.PetersenGraph().copy(immutable=True)
sage: [sorted(m) for m in G.perfect_matchings()]
[[(0, 1), (2, 3), (4, 9), (5, 7), (6, 8)],
[(0, 1), (2, 7), (3, 4), (5, 8), (6, 9)],
[(0, 4), (1, 2), (3, 8), (5, 7), (6, 9)],
[(0, 4), (1, 6), (2, 3), (5, 8), (7, 9)],
[(0, 5), (1, 2), (3, 4), (6, 8), (7, 9)],
[(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]]

sage: list(Graph().perfect_matchings())
[[]]

sage: G = graphs.CompleteGraph(5)
sage: list(G.perfect_matchings())
[]

2.2 BIPARTITE GRAPHS

This subsection explicitly mentions all the existing funtions listed within the module “Bipartite graphs”
(as of June 26, 2024) concerning matching theory.

2.2.1 matching()
The method matching() returns a maximum matching of the graph represented by the list of its
edges.
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matching(value_only=False, algorithm='Hopcroft-Karp', use_edge_labels=False, solver=None,
verbose=0, integrality_tolerance)↪

Returns a maximum matching of the graph represented by the list of its edges.
Given a graph 𝐺 such that each edge 𝑒 has a weight 𝑤𝑒, a maximum matching is a subset 𝑆 of the
edges of 𝐺 of maximum weight such that no two edges of 𝑆 are incident with each other.

INPUT:
• value_only – boolean (default: False); when set to True, only the cardinal (or the weight) of the

matching is returned.
• algorithm – string (default: ‘Hopcroft-Karp’ if use_edge_lables==false, otherwise
‘Edmonds’); algorithm to use among:

– ‘Hopcroft-karp’ selects the default bipartite graph algorithm as implemented in NetworkX,
– ‘Eppstein’ selects Eppstein’s algorithm as implemented in NetworkX,
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX,
– ‘LP’ uses a Linear Program formulation of the matching problem.

• use_edge_labels – boolean (default: False)
– when set to True, computes a weighted matching where each edge is weighted by its label (if

an edge has no label, 1 is assumed); only if algorithm is ‘Edmonds, ‘LP’
– when set to False, each edge has weight 1.

• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to
be used. If set to None, the default one is used. For more information on MILP solvers and which
default solver is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet
(only useful when algorithm == ‘LP’)

• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring;
see MixedIntegerLinearProgram.get_values().

EXAMPLES:
Maximum matching in a cycle graph:

sage: G = BipartiteGraph(graphs.CycleGraph(10))
sage: G.matching() # needs networkx
[(0, 1, None), (2, 3, None), (4, 5, None), (6, 7, None), (8, 9, None)]

The size of a maximum matching in a complete bipartite graph using Eppstein:

sage: G = BipartiteGraph(graphs.CompleteBipartiteGraph(4,5))
sage: G.matching(algorithm="Eppstein", value_only=True) # needs networkx
4
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2.2.2 matching_polynomial()
The method matching_polynomial() computes the matching polynomial.

matching_polynomial(algorithm='Godsil', name=None)

Computes the matching polynomial.
The matching polynomial is defined as in [12], where 𝑝(𝐺, 𝑘) denotes the number of 𝑘-matchings
(matchings with 𝑘 edges) in 𝐺:

𝜇(𝑥) =
∑

𝑘⩾0
(−1)𝑘𝑝(𝐺, 𝑘)𝑥𝑛−2𝑘.

INPUT:
• algorithm – string (default: ‘Godsil’); either ‘Godsil’ or ‘rook’; ‘rook’ is usually faster for

larger graphs.
• name – string (default: None); name of the variable in the polynomial, set to 𝑥 when name is None.

EXAMPLES:

sage: BipartiteGraph(graphs.CubeGraph(3)).matching_polynomial() # needs sage.libs.flint
x^8 - 12*x^6 + 42*x^4 - 44*x^2 + 9

sage: x = polygen(QQ)
sage: g = BipartiteGraph(graphs.CompleteBipartiteGraph(16, 16))
sage: bool(factorial(16) * laguerre(16, x^2) # needs sage.symbolic
....: == g.matching_polynomial(algorithm='rook'))
True

Compute the matching polynomial of a line with 60 vertices:

sage: from sage.functions.orthogonal_polys import chebyshev_U # needs sage.symbolic
sage: g = next(graphs.trees(60))
sage: (chebyshev_U(60, x/2) # needs sage.symbolic
....: == BipartiteGraph(g).matching_polynomial(algorithm='rook'))
True

The matching polynomial of a tree is equal to its characteristic polynomial:

sage: g = graphs.RandomTree(20)
sage: p = g.characteristic_polynomial() # needs sage.modules
sage: p == BipartiteGraph(g).matching_polynomial(algorithm='rook') # needs sage.modules
True
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2.2.3 perfect_matchings()
The method perfect_matchings() returns an iterator over all perfect matchings of the bipartite
graph.

perfect_matchings(labels=False)

Returns an iterator over all perfect matchings of the bipartite graph.

INPUT:
• labels – boolean (default: False); when True, the edges in each perfect matching are triples

(containing the label as the third element), otherwise the edges are pairs.
ALGORITHM:

Choose a vertex 𝑣, then recurse through all edges incident to 𝑣, removing one edge at a time whenever
an edge is added to a matching.
EXAMPLES:

sage: B = BipartiteGraph({0: [5, 7], 1: [4, 6, 7], 2: [4, 5, 8], 3: [4, 5, 6], 6: [9], 8:
[9]})↪

sage: len(list(B.perfect_matchings()))
6
sage: G = Graph(B.edges(sort=False))
sage: len(list(G.perfect_matchings()))
6

The algorithm ensures that for any edge of a perfect matching, the first vertex is on the left set of
vertices and the second vertex in the right set:

sage: B = BipartiteGraph({0: [5, 7], 1: [4, 6, 7], 2: [4, 5, 8], 3: [4, 5, 6], 6: [9], 8:
[9]})↪

sage: m = next(B.perfect_matchings(labels=False))
sage: B.left
{0, 1, 2, 3, 9}
sage: B.right
{4, 5, 6, 7, 8}
sage: sorted(m)
[(0, 7), (1, 4), (2, 5), (3, 6), (9, 8)]
sage: all((u in B.left and v in B.right) for u, v in m)
True

Multiple edges are taken into account:

sage: B = BipartiteGraph({0: [5, 7], 1: [4, 6, 7], 2: [4, 5, 8], 3: [4, 5, 6], 6: [9], 8:
[9]})↪

sage: B.allow_multiple_edges(True)
sage: B.add_edge(0, 7)
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sage: len(list(B.perfect_matchings()))
10

Empty graph:

sage: list(BipartiteGraph().perfect_matchings())
[[]]

Bipartite graph without perfect matching:

sage: B = BipartiteGraph(graphs.CompleteBipartiteGraph(3, 4))
sage: list(B.perfect_matchings())
[]

Check that the number of perfect matchings of a complete bipartite graph is consistent with the
matching polynomial:

sage: B = BipartiteGraph(graphs.CompleteBipartiteGraph(4, 4))
sage: len(list(B.perfect_matchings()))
24
sage: B.matching_polynomial(algorithm='rook')(0) # needs sage.modules
24

2.3 COMMON GRAPHS

There are several graphs/ families of graphs, that play significant role in the theory of matching covered
graphs. This sections lists out some of the existing such crucial graphs (for instance Petersen graph,
Hexahedral graph and so on), and graph families (for instance Ladder graph, Circular ladder graph, aka
Prism graph, Wheel graph and so on).

2.3.1 PetersenGraph
This subsection visits PetersenGraph implemented in SageMath.

static PetersenGraph()

Returns the Petersen Graph.
The Petersen Graph is a named graph that consists of 10 vertices and 15 edges, usually drawn as a
five-point star embedded in a pentagon.
The Petersen Graph is a common counterexample. For example, it is not Hamiltonian.

PLOTTING: See the plotting section for the generalized Petersen graphs.
EXAMPLES: We compare below the Petersen graph with the default spring-layout versus a planned
position dictionary of (𝑥, 𝑦) tuples:
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sage: petersen_spring = Graph({0:[1,4,5], 1:[0,2,6], 2:[1,3,7],
3:[2,4,8], 4:[0,3,9], 5:[0,7,8],
6:[1,8,9], 7:[2,5,9], 8:[3,5,6],
9:[4,6,7]})

sage: petersen_spring.show() # long time # needs sage.plot
sage: petersen_database = graphs.PetersenGraph()
sage: petersen_database.show() # long time # needs sage.plot

2.3.2 HexahedralGraph
This static method visits HexahedralGraph implemented in SageMath.

static HexahedralGraph()

Returns the Hexahedral graph (with 8 nodes).
A regular hexahedron is a 6-sided cube. The hexahedral graph corresponds to the connectivity of
the vertices of the hexahedron. This graph is equivalent to a 3-cube.

PLOTTING: The Hexahedral graph should be viewed in 3 dimensions. We choose to use a planar
embedding of the graph. We hope to add rotatable, 3-dimensional viewing in the future. In such a case,
an argument will be added to select the desired layout.
EXAMPLES:

Construct and show a Hexahedral graph:

sage: g = graphs.HexahedralGraph()
sage: g.show() # long time # needs sage.plot

Create several hexahedral graphs in a Sage graphics array. They will be drawn differently due to the
use of the spring-layout algorithm:

sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
....: k = graphs.HexahedralGraph()
....: g.append(k)
sage: for i in range(3):
....: n = []
....: for m in range(3):
....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
....: j.append(n)
sage: G = graphics_array(j)
sage: G.show() # long time

2.3.3 LadderGraph
The static method LadderGraph(n) returns a ladder graph with 2 × 𝑛 nodes.
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static LadderGraph(n)

Returns the Ladder graph with 2 × 𝑛 nodes.
A ladder graph is a basic structure that is typically displayed as a ladder, i.e.: two parallel path
graphs connected at each corresponding node pair.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm.
By convention, each ladder graph will be displayed horizontally, with the first 𝑛 nodes displayed left to
right on the top horizontal line.
EXAMPLES:

Construct and show a ladder graph with 14 nodes:

sage: g = graphs.LadderGraph(7)
sage: g.show() # long time # needs sage.plot

Create several ladder graphs in a Sage graphics array:

sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
....: k = graphs.LadderGraph(i+2)
....: g.append(k)
sage: for i in range(3):
....: n = []
....: for m in range(3):
....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
....: j.append(n)
sage: G = graphics_array(j)
sage: G.show() # long time

2.3.4 CicularLadderGraph
The static method CircularLadderGraph(n) returns a circular ladder graph with 2 × 𝑛 nodes.

static CircularLadderGraph(n)

Returns the Circular ladder graph with 2 × 𝑛 nodes.
A Circular ladder graph is a ladder graph that is connected at the ends, i.e.: a ladder bent around
so that top meets bottom. Thus it can be described as two parallel cycle graphs connected at each
corresponding node pair.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm.
By convention, the circular ladder graph is displayed as an inner and outer cycle pair, with the first nodes
drawn on the inner circle. The first (0) node is drawn at the top of the inner-circle, moving clockwise after
that. The outer circle is drawn with the (n+1)-th node at the top, then counter-clockwise as well. When

17

https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/graph_generators.html#sage.graphs.graph_generators.GraphGenerators.CircularLadderGraph


𝑛 == 2, we rotate the outer circle by an angle of 𝜋8 to ensure that all edges are visible (otherwise the 4
vertices of the graph would be placed on a single line).
EXAMPLES:

Construct and show a circular ladder graph with 26 nodes:

sage: g = graphs.CircularLadderGraph(13)
sage: g.show() # long time # needs sage.plot

Create several circular ladder graphs in a Sage graphics array:

sage: g = []
sage: j = []
sage: for i in range(9):
....: k = graphs.CircularLadderGraph(i+3)
....: g.append(k)
sage: for i in range(3): # needs sage.plot
....: n = []
....: for m in range(3):
....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
....: j.append(n)
sage: G = graphics_array(j) # needs sage.plot
sage: G.show() # long time # needs sage.plot

2.3.5 WheelGraph
The static method WheelGraph(n) returns a Wheel graph with 𝑛 nodes.

static LadderGraph(n)

Returns the Wheel graph with 𝑛 nodes.
A Wheel graph is a basic structure where one node is connected to all other nodes and those (outer)
nodes are connected cyclically.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm.
By convention, each wheel graph will be displayed with the first (0) node in the center, the second node
at the top, and the rest following in a counterclockwise manner.
With the wheel graph, we see that it doesn’t take a very large n at all for the spring-layout to give a
counter-intuitive display. (See Graphics Array examples below).
EXAMPLES:

We view many wheel graphs with a Sage Graphics Array, first with this constructor (i.e., the position
dictionary filled):

sage: # needs sage.plot
sage: g = []
sage: j = []

18

https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/graph_generators.html#sage.graphs.graph_generators.GraphGenerators.WheelGraph


sage: for i in range(9):
....: k = graphs.WheelGraph(i+3)
....: g.append(k)
...
sage: for i in range(3):
....: n = []
....: for m in range(3):
....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
....: j.append(n)
...
sage: G = graphics_array(j)
sage: G.show() # long time

Next, using the spring-layout algorithm:

sage: # needs networkx sage.plot
sage: import networkx
sage: g = []
sage: j = []
sage: for i in range(9):
....: spr = networkx.wheel_graph(i+3)
....: k = Graph(spr)
....: g.append(k)
...
sage: for i in range(3):
....: n = []
....: for m in range(3):
....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
....: j.append(n)
...
sage: G = graphics_array(j)
sage: G.show() # long time

Compare the plotting:

sage: # needs networkx sage.plot
sage: n = networkx.wheel_graph(23)
sage: spring23 = Graph(n)
sage: posdict23 = graphs.WheelGraph(23)
sage: spring23.show() # long time
sage: posdict23.show() # long time

3 PROPOSED NEW FUNCTIONS

This section mentions the lists of all the new functions, that are proposed to be implemented on SageMath
— pertaining to the theory of matching covered graphs.

3.1 PERFECT MATCHINGS AND MATCHING COVERED GRAPHS

For a graph 𝐺 ∶= (𝑉, 𝐸), a matching is any subset of the edge set 𝐸, say 𝑀, such that |𝑀 ∩ 𝜕(𝑣)1| ⩽ 1
for each vertex 𝑣 ∈ 𝑉. Here, for a vertex 𝑣, the notation 𝜕(𝑣) denotes the set of edges incident at that
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vertex. A matching 𝑀 is a maximum matching if |𝑀| ⩾ |𝑁| for each matching 𝑁 of 𝐺. This leads us to
the following problem:

Problem 3.1. Given a graph 𝐺, find a maximum matching.

As discussed in the Section ‘Existing Functions in SageMath’, currently, the function matching() under
the module “Undirected graphs” and the function matching() under the module “Bipartite graphs”
compute the maximum (weighted) matching for a general graph and a bipartite graph respectively. Note
that for the general case, there are two algorithms, namely the Edmonds algorithm (that utilizes Edmonds
blossom algorithm [11] and works in 𝒪(|𝐸| ⋅ |𝑉|2)), and the LP (that uses a Linear Programming
Formulation) that have been implemented in the former mentioned method matching(). For bipartite
graphs, the latter function matching() implements several algorithms, the efficient among which is the
Hopcroft-Karp algorithm[13] (𝒪(|𝐸| ⋅√|𝑉|)).
However, there is no implementation of the famous Micali-Vazirani algorithm [22] (described below)
for an (unweighted) maximum matching of a general graph even though it has a time complexity of
𝒪(|𝐸| ⋅

√
|𝑉|), which is (at least theoretically) significantly better than that of of the best among existing

implemented algorithms.

3.1.1 matching() [Inclusion of Micali-Vazirani algorithm]
We propose the following modification to the existing method matching() under both “Undirected
graphs” and “Bipartite graphs” to include the Micali-Vazirani algorithm to compute a maximum
(unweighted) matching.

matching(value_only=False, algorithm='Edmonds', use_edge_labels=False, solver=False,
verbose=None, integrality_tolerance=0)↪

Returns a maximum weighted matching of the graph represented by the list of its edges.

INPUT:
• value_only – boolean (default: False); when set to True, only the cardinal (or the weight) of the

matching is returned
• algorithm – string (default: ‘Edmonds’)

– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)

• use_edge_labels – boolean (default: False)
– when set to True, computes a weighted matching where each edge is weighted by its label (if

an edge has no label, 1 is assumed)
– when set to False, each edge has weight 1
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• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to
be used. If set to None, the default one is used. For more information on MILP solvers and which
default solver is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet
(only useful when algorithm == ‘LP’)

• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring;
see MixedIntegerLinearProgram.get_values().

OUTPUT:
• When value_only=False (default), this method returns an EdgesView containing the edges of a

maximum matching of 𝐺.
• When value_only=True, this method returns the sum of the weights (default: 1) of the edges of a

maximum matching of 𝐺. The type of the output may vary according to the type of the edge labels
and the algorithm used.

ALGORITHM:
The problem is solved using Edmond’s algorithm implemented in NetworkX, or using Linear

Programming depending on the value of algorithm. If algorithm is set to ’Micali-Vazirani’, then
the problem is solved using the following algorithm:

Algorithm 1 : Micali-Vazirani algorithm [22]
1: if use_edge_labels is True then
2: return ‘Micali Vazirani computes the maximum unweighted matching. Please set either

use_edge_labels to False or algorithm to anything valid apart from ‘Micali-Vazirani’.’
3: end if
4: 𝑀 ← a maximum matching found using Micali-Vazirani algorithm ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

5: return 𝑀
6: ⊳ Please refer to [22] for the pseudocode of the algorithm; it has not been explicitly written

down here because of its length.

TIME COMPLEXITY: 𝒪(|𝐸| ⋅√|𝑉|)

3.1.2 has_perfect_matching() [Inclusion of a certificate]
A matching 𝑀 of a graph 𝐺 is a perfect matching if |𝑀 ∩ 𝜕(𝑣)| = 1 for each vertex 𝑣 of 𝐺. A graph is
matchable if it has a perfect matching and an edge 𝑒 of a graph 𝐺 is a matchable edge if there exists
some perfect matching of 𝑀 containing 𝑒. This raises the following decision problem:

Decision Problem 3.2. Given a graph 𝐺, decide whether it is matchable.

The method has_perfect_matching(), listed in the Section ‘Existing Functions in SageMath’, provides
a poly-time algorithm for the above decision problem.
In 1947, Tutte [24] showed the necessary and sufficient condition for the existence of a perfect matching
in a graph 𝐺 that is stated in the following theorem.
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Tutte’s Theorem [24]

Theorem 3.3. A graph 𝐺 has a perfect matching if and only if

𝑜(𝐺 − 𝑆) ⩽ |𝑆|

for every subset 𝑆 of 𝑉, where 𝑜(𝐺 − 𝑆) refers to the number of odd components of 𝐺 − 𝑆.

If 𝐺 does not have a perfect matching, then there exists a subset 𝑆 of the vertex set 𝑉, such that
𝑜(𝐺 − 𝑆) > |𝑆|.

Such a set 𝑆 is referred to as a Tutte set. However, there is no implementation in SageMath that
finds the Tutte set of a graph, that is not matchable. We propose the the incorporation of a boolean
argument cetificate in the existing method , that shall be False by default and when set to True shall
output:

• an arbitrary perfect matching (if the graph is matchable), or otherwise
• an arbitrary Tutte set.

has_perfect_matching(algorithm='Edmonds', certificate=False, solver=None, verbose=0,
integrality_tolerance)↪

Returns whether this graph has a perfect matching.

INPUT:
• algorithm – string (default: ‘Edmonds’)

– ‘Edmonds’ uses Edmonds’ algorithm as implemented in NetworkX to find a matching of
maximal cardinality, then check whether this cardinality is half the number of vertices of the
graph.

– ‘LP_matching’ uses a Linear Program to find a matching of maximal cardinality, then check
whether this cardinality is half the number of vertices of the graph.

– ‘LP’ uses a Linear Program formulation of the perfect matching problem: put a binary
variable 𝑏[𝑒] on each edge 𝑒, and for each vertex 𝑣, require that the sum of the values of
the edges incident to 𝑣 is 1.

– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum
matching)

• certificate – boolean (default: False); when set to True, it outputs:

– an arbitrary perfect matching (if the graph is matchable), or otherwise

– an arbitrary Tutte set.

• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to
be used. If set to None, the default one is used. For more information on MILP solvers and which
default solver is used, see the method solve of the class MixedIntegerLinearProgram.
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• verbose – integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet
(only useful when algorithm == ‘LP_matching’ or algorithm == ‘LP’)

• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring;
see MixedIntegerLinearProgram.get_values().

OUTPUT:
A boolean.

3.1.3 is_bicritical()
A matchable graph 𝐺 is said to be bicritical if 𝐺 − 𝑢 − 𝑣 is matchable for every pair of distinct vertices
𝑢 and 𝑣. Bicritcal graphs play a significant role in the theory of matching covered graphs as we will see
in further sections. Consequently, this raises a decision problem.

Decision Problem 3.4. Given a matchable graph 𝐺, decide whether it is bicritical.

We state and prove the following theorem.

Theorem 3.5. Given a matchable graph 𝐺 and a matching 𝑀. Let 𝑢 and 𝑣 be two distinct vertices
of 𝐺. The following statements are equivalent.

1. 𝐺 − 𝑢 − 𝑣 is matchable.
2. There exists an 𝑀-alternating odd length 𝑢𝑣-path in 𝐺 with the starting and the ending edge

in 𝑀.

Here the length of a path refers to the number of edges in that path.
Proof. Let 𝐺 be a matching covered graph. Consider two distinct vertices 𝑢 and 𝑣. Suppose 𝐺 − 𝑢 − 𝑣
is matchable. Let 𝑁 be a perfect matching of 𝐺 − 𝑢 − 𝑣. Observe that each vertex in 𝐺 distinct from 𝑢
and 𝑣 is matched to precisely one vertex in 𝑀 and precisely some other vertex in 𝑁. 𝑢 and 𝑣 are the only
vertices in 𝐺, that are 𝑁-exposed and 𝑀-matched. Thus, the symmetric difference of 𝑀 and 𝑁 in the
graph 𝐺, generates a set of 𝑀-𝑁 alternating even cycles with precisely one 𝑀-𝑁 alternating odd-length
path. This path has 𝑢 and 𝑣 as its ends and clearly, it starts and ends with edges that are in 𝑀, as 𝑢 and 𝑣
are 𝑀-matched. This is the required path.
Conversely, let 𝑃 denote an 𝑀-alternating odd length 𝑢𝑣-path that starts and ends with edges in 𝑀.
Observe that 𝑀⊕𝑃 is a perfect matching of 𝐺 − 𝑢− 𝑣, where 𝑀⊕𝑁 refers to the symmetric difference
of the two (edge) subsets 𝑀 and 𝑁 in 𝐺. This completes the proof.
Observe that since 𝑀 is matchable, for distinct vertices 𝑢 and 𝑣 in 𝐺 if there exist an 𝑀 alternating
odd-length 𝑢𝑣-path in𝐺 with both starting and ending edges in𝑀, there exists an𝑀 alternating odd-length
𝑢𝑣-path in 𝐺 with both starting and ending edges not in 𝑀. We shall use this observation and the method
described in [16] to check whether a given matchable graph is bicritical or not.

is_bicritical(perfect_matching=None, algorithm='Micali-Vazirani', solver=None,
conp_certificate=False, verbose=0, integrality_tolerace)↪

Checks whether the graph is bicritical.
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INPUT:
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a matching is computed using the other parameters.

• algorithm – string (default: ‘Micali-Vazirani’); the algorithm to use to compute a maximum
matching of the graph among

– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum
matching)

– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX,
– ‘LP_matching’ uses a Linear Program to find a matching of maximal cardinality, then check

whether this cardinality is half the number of vertices of the graph.
– ‘LP’ uses a Linear Program formulation of the matching problem.

• conp_certificate – boolean (default: False); when set to True outputs an edge 𝑒 such that 𝑒 is
not matchable in 𝐺, if 𝐺 is not matching covered.

• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to
be used. If set to None, the default one is used. For more information on MILP solvers and which
default solver is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet
(only useful when algorithm == ‘LP’)

• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring;
see MixedIntegerLinearProgram.get_values().

OUTPUT:
a boolean

ALGORITHM:
Algorithm 2 : Decide whether 𝐺 is bicritical [16]

1: if 𝐺 has at most 1 vertex then ⊳ 𝒪(1)
2: if certificate is True then ⊳ 𝒪(1)
3: return False, ‘𝐺 has at most one vertex.’ ⊳ 𝒪(1)
4: end if
5: return False ⊳ 𝒪(1)
6: end if
7: if 𝐺 is not connected then ⊳ 𝒪(|𝐸| + |𝑉|)
8: if certificate is True then ⊳ 𝒪(1)
9: return False, ‘𝐺 is not connected.’ ⊳ 𝒪(1)

10: end if
11: return False ⊳ 𝒪(1)
12: end if
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13: Let exist ← True ⊳ 𝒪(1)
14: Construct an adjacency list for 𝐺 ⊳ 𝒪(|𝐸|)
15: if pefect_matching is None then 𝑀 ← 𝐺.matching() ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

16: end if
17: if 𝑀 is not a perfect matching of 𝐺 then
18: if conp_certificate is True then
19: 𝑒 ← an arbitrary edge in 𝑀 ⊳ 𝒪(1)
20: 𝑢, 𝑣 ← ends of 𝑒 ⊳ 𝒪(1)
21: return False, {𝑢 and 𝑣} ⊳ 𝒪(1)
22: end if
23: return False ⊳ 𝒪(1)
24: end if
25: 𝑢 ← an arbitrary vertex in 𝐺. ⊳ 𝒪(1)
26: for each 𝑢 in 𝑉(𝐺) − 𝑢 do ⊳ 𝒪(|𝑉|)
27: exist←𝑀-Alternating Path Search(𝑢) ⊳ 𝒪(|𝐸|) ⊳

Please refer to [16] for how to perform an efficient 𝑀-alternating Path Search by constructing
an 𝑀-alternating tree for given perfect matching 𝑀 for a vertex 𝑣 in 𝒪(|𝐸|).

28: if exist is False then
29: if certificate is True then
30: 𝑣 ← a vertex that is not reachable from 𝑢 via an 𝑀-alternating odd-length path

starting and ending with edges not in 𝑀 ⊳ 𝒪(1)
31: return False, {𝑢 and 𝑣} ⊳ 𝒪(1)
32: end if
33: return False, {𝑢 and 𝑣} ⊳ 𝒪(1)
34: end if
35: end for
36: return True ⊳ 𝒪(1)

TIME COMPLEXITY: 𝒪(|𝑉| ⋅ |𝐸|).
EXAMPLE:

• Any matchable bipartite graph is not bicritical.
• All Wheel graphs, that are matchable, are bicritical.

3.1.4 is_matching_covered()
A graph is nontrivial if its order is at least two. A matching covered graph is a connected nontrivial
graph in which each edge participates in some perfect matching. The reader may easily verify the fact
that a graph is matching covered if and only if its underlying simple graph is matching covered. This
immediately brings us to the subsequent decision problem.

Decision Problem 3.6. Given a connected nontrivial graph 𝐺, decide whether it is matching
covered.

For a nonbipartite graph, we shall use Theorem 3.5 and the method of constructing an 𝑀-alternating tree
as described in [15] to check whether a graph is matching covered or not. It shall work in with a worst time
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complexity of 𝒪(|𝐸|2) provided we have a perfect matching 𝑀 of 𝐺. Interestingly, if we have a perfect
matching 𝑀 of 𝐺, for a bipartite graph 𝐺, we can check if 𝐺 is matching covered in linear time using the
following theorem. This theorem has been adopted from the book [19].

Theorem 3.7. Let 𝐺[𝐴, 𝐵] be a bipartite graph and let 𝑀 be a perfect matching of 𝐺. Let 𝐻 be the
graph obtained from 𝐺 by the addition of a parallel edge to each edge of 𝑀 . Let 𝐷 be the directed
graph obtained from 𝐻 by directing every edge of 𝐸(𝐻) −𝑀 from 𝐴 to 𝐵 and by directing every
edge of 𝑀 from 𝐵 to 𝐴. It holds that

𝐺 is matching covered if and only if 𝐷 is strongly connected.

Proof. Suppose that 𝐷 is strongly connected. Clearly, 𝐻 is connected; hence 𝐺 is connected. Note that
the edges of 𝑀 are matchable. Thus, it suffices to show that each edge in 𝐸(𝐺) −𝐻 is matchable.
Let 𝑎𝑏 denote an edge of 𝐸(𝐺) −𝑀, where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. As 𝐷 is strongly connected, there is in 𝐷
a directed path, 𝑃, from 𝑏 to 𝑎. Thus, 𝑃 plus 𝑎𝑏 is a directed cycle in 𝐷. The corresponding cycle in 𝐺
is 𝑀-alternating and contains the edge 𝑎𝑏, hence 𝑎𝑏 is matchable. This conclusion holds for each edge
𝑎𝑏 in 𝐸(𝐺) −𝑀. We deduce that every edge of G is matchable. As 𝐺 is connected, in fact 𝐺 is matching
covered.
Conversely, suppose that 𝐺 is matching covered. Clearly, 𝐺 is connected; hence so too are 𝐻 and 𝐷. To
prove that 𝐷 is strongly connected we must prove that every arc 𝑢𝑣 of 𝐷 is in a directed cycle. If 𝑢𝑣 is in
𝑀 or if 𝑢𝑣 corresponds to an edge added to 𝐻 as a parallel edge of an edge in 𝑀 then 𝑢𝑣 is in a directed
cycle of order two. Assume then that 𝑢𝑣 corresponds to an edge of 𝐸(𝐺)−𝑀. As 𝐺 is matching covered,
the edge 𝑢𝑣 is matchable, hence 𝑢𝑣 is in an 𝑀-alternating cycle, 𝑄. The corresponding cycle in 𝐷 is
directed. Thus, 𝑢𝑣 is in a directed cycle of 𝐷. We conclude that every arc of 𝐷 is in a directed cycle. As
𝐷 is connected, we conclude that 𝐷 is strongly connected.

is_matching_covered(perfect_matching=None, algorithm='Micali-Vazirani', solver=None,
conp_certificate=False, verbose=0, integrality_tolerace)↪

Checks whether the graph is matching covered.

INPUT:
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a matching is computed using the other parameters.

• algorithm – string (default: ‘Micali-Vazirani’); the algorithm to use to compute a maximum
matching of the graph among

– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX,
– ‘LP_matching’ uses a Linear Program to find a matching of maximal cardinality, then check

whether this cardinality is half the number of vertices of the graph.
– ‘LP’ uses a Linear Program formulation of the matching problem.

• conp_certificate – boolean (default: False); when set to True outputs either a comment or two
vertices 𝑢 and 𝑣 such that 𝐺 − 𝑢 − 𝑣 is not matchable, if 𝐺 is not bicritical.
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• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to
be used. If set to None, the default one is used. For more information on MILP solvers and which
default solver is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet
(only useful when algorithm == ‘LP’)

• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring;
see MixedIntegerLinearProgram.get_values().

OUTPUT:
a boolean

ALGORITHM:
Algorithm 3 : Check if 𝐺 is matching covered

1: if 𝐺 is not connected nontrivial then ⊳ 𝒪(1)
2: return ⊳ A matching covered graph is connected and nontrivial
3: end if
4: if perfect_matching is None then
5: 𝑀 ← 𝐺.matching() ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

6: end if
7: if 𝑀 is not a perfect matching of 𝐺 then
8: if conp_certificate is True then
9: 𝑒 ← an arbitrary edge in 𝑀 ⊳ 𝒪(1)

10: return False, 𝑒 ⊳ 𝒪(1)
11: end if
12: return False ⊳ 𝒪(1)
13: end if
14: if 𝐺 is bipartite then ⊳ 𝒪(|𝐸| + |𝑉|)
15: Construct the digraph 𝐷, as defined in Theorem 3.7 ⊳ 𝒪(|𝐸| + |𝑉|)
16: Determine whether 𝐷 is strongly connected ⊳ 𝒪(|𝐸| + |𝑉|); see [8]
17: if 𝐷 is not strongly connected then
18: if conp_certificate is True then
19: 𝑒 ← an arbitrary edge in 𝐷, that does not participate in a directed cycle ⊳ Alearly

found while checking if 𝐷 is strongly connected or not
20: return False, 𝑒 ⊳ 𝒪(1)
21: end if
22: return False ⊳ 𝒪(1)
23: else
24: return True
25: end if
26: else
27: for each vertex 𝑢 in 𝐺 do ⊳ 𝒪(|𝑉|)
28: Let 𝑒 ← 𝜕(𝑢) ∩𝑀 and let 𝑣 ← 𝑀(𝑢)
29: exist← True if there exists an 𝑀-alternating 𝑢𝑤-path in 𝐺− 𝑒 to each 𝑤 ∈ 𝜕(𝑢) − 𝑣
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⊳ 𝒪(|𝐸|); see [15]
30: if not exist for some 𝑤 then
31: if conp_certificate is True then
32: return False, 𝑢𝑤 ⊳ 𝒪(1)
33: end if
34: return False ⊳ 𝒪(1)
35: else
36: continue
37: end if
38: end for
39: return True
40: end if

TIME COMPLEXITY:
• 𝒪(|𝐸| ⋅ |𝑉|) if 𝐺 is nonbipartite, or otherwise
• 𝒪(|𝐸| + |𝑉|).

EXAMPLE:
• 𝐾𝑛𝑚 for 𝑛 > 𝑚 > 1 is not matchable, hence is not matching covered.
• 𝐶4 plus the (unique) edge, that is not a multiple/ parallel edge, is matchable, but not matching

covered.
• All Wheel graphs are matching covered.

3.2 BARRIERS AND CANONICAL PARTITION

For a graph𝐺, a subset𝐵 of the vertex set is a barrier if |𝑈| = 𝑜(𝐺−𝐵)−|𝐵|, where |𝑈| = |𝑉(𝐺)|−2|𝑀|.
Here |𝑀| denotes the cardinality of the maximum matching of 𝐺 and 𝑜(𝐺−𝐵) denotes the number of odd
components in 𝐺 − 𝐵. For a matchable graph 𝐺, note that |𝑈| is precisely zero; thus, 𝑜(𝐺 − 𝐵) = |𝐵|.
The empty set and all singletons are barriers for every matchable graph. Such a barrier is known as a
trivial barrier. The reader may easily verify the following proposition (which will be used in proving the
theorem next).
Proposition 3.8. Let 𝐺 be a graph, and let 𝑋 be a subset of 𝑉. It holds that:

|𝑋| − 𝑜(𝐺 − 𝑋) ≡ |𝑉| mod 2.

The following theorem will be helpful in the implementation of the next algorithm which we will discuss
soon after.

Theorem 3.9. Let 𝑢 and 𝑣 be any two vertices in a matchable graph 𝐺. Then the graph 𝐺 − 𝑢− 𝑣
is matchable if and only if there is no barrier of G which contains both 𝑢 and 𝑣.
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Proof. Suppose that 𝐺− 𝑢− 𝑣 is matchable. Our goal is to show that each subset of 𝑉 that contains both
𝑢 and 𝑣 is not a barrier of 𝐺. Let 𝐵 ⊆ 𝑉 such that 𝑢, 𝑣 ∈ 𝐵. Let 𝑆 denote the set 𝐵 − 𝑢 − 𝑣. Observe that

𝑜(𝐺 − 𝐵) = 𝑜((𝐺 − 𝑢 − 𝑣) − 𝑆)
⩽ |𝑆| (∵ 𝐺 − 𝑢 − 𝑣 is matchable)
= |𝐵| − 2

Consequently, 𝑜(𝐺 − 𝐵) < |𝐵|. Hence, 𝐵 is not a barrier of 𝐺.
Conversely, suppose that 𝐺 − 𝑢 − 𝑣 is matchable. By Proposition 3.8 and Theorem 3.3, there exists a
subset 𝑆 of 𝑉(𝐺 − 𝑢 − 𝑣) such that

𝑜(𝐺 − 𝑢 − 𝑣 − 𝑆) ⩾ |𝑆| + 2.

Let 𝐵 ∶= 𝑆 + 𝑢 + 𝑣; clearly,
𝑜(𝐺 − 𝐵) ⩾ |𝐵|.

Since 𝐺 is matchable, by Theorem 3.3, the strict inequality can not hold. Thus, 𝑜(𝐺 − 𝐵) = |𝐵|. Thus,
|𝐵|, that contains both 𝑢 and 𝑣, is the required barrier of 𝐺.
Two vertices 𝑢 and 𝑣 are kotzig related if 𝐺 − 𝑢 − 𝑣 is not matchable.

3.2.1 maximal_barrier()
For a graph 𝐺, a barrier 𝐵 is a maximal barrier if 𝐶 is not a barrier for each 𝐶 such that 𝐵 ⊂ 𝐶 ⊆ 𝑉. The
following beautiful result concerning matching covered graphs and maximal barriers is shown by Kotzig;
see “Matching Theory” [17].

The canonical partition theorem [17]

Theorem 3.10. The maximal barriers of a matching covered graph 𝐺 partition its vertex set, and
this partition is called its canonical partition.

Henceforth, each vertex in a matching covered graph participates in a unique maximal barrier (this need
not be true for any graph). Thus, the kotzig relation is an equivalence relation for a matching covered
graph. This raises the following problem.

Decision Problem 3.11. Given a matching covered graph 𝐺 and vertex 𝑣 of it; find the maximal
barrier containing the vertex.

We shall use 3.9 and an analogous approach discussed in [15] to develop an efficient algorithm that shall
answer the above problem.

maximal_barrier_in_matching_covered_graph(v, perfect_matching=None,
matching_covered_check=True, algorithm='Micali-Vazirani')↪

Returns the (unique) maximal barrier of a matching covered graph 𝐺 containing the vertex 𝑣.

INPUT:
• the vertex 𝑣 of the graph 𝐺; we shall find the (unique) maximal barrier of 𝐺 containing 𝑣.
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• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any
valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before computing the maximal barrier containing
𝑣, we shall ensure that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
OUTPUT:

A set 𝐵 of vertices such that 𝐵 is the (unique) maximal barrier containing 𝑣.
ALGORITHM:

Algorithm 4 : Finding the (unique) maximal barrier containing 𝑣
1: if perfect_matching is None then ⊳ 𝒪(1)
2: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

3: end if
4: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
5: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
6: end if
7: if matching_covered_check is True then ⊳ 𝒪(1)
8: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
9: return ‘𝐺 is not matching covered.’ ⊳ This method is defined for a matching covered

graph
10: end if
11: end if
12: 𝐵 ← 𝑉 ⊳ Initialize the set of maximal barrier containing 𝑣
13: 𝑢 ← 𝑀(𝑣) ⊳ Let 𝑢 be the 𝑀-neighbor of 𝑣
14: 𝐵 ← 𝐵 − 𝑤, for each vertex 𝑤 in 𝐺 − 𝑣, that are reachable from 𝑢 via an even-length

𝑀-alternating path with the starting edge not in 𝑀 and the ending edge in 𝑀, that is done
by constructing an 𝑀-alternating tree of 𝐺 − 𝑣 ⊳ 𝒪(|𝐸|) for all 𝑤, for a specified 𝑢; see: [15]

15: return 𝐵 ⊳ 𝒪(1)

TIME COMPLEXITY: 𝒪(|𝐸|)
EXAMPLE:

• In bipartite matching covered graphs, each of the color class is the maximal barrier.
• In bicritical graphs, each individual vertex in the maximal barrier.
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3.2.2 canonical_partition()
As discussed above, we shall compute the canonical partition of a matching covered graph as
follows.

canonical_partition(perfect_matching=None, matching_covered_check=True,
algorithm='Micali-Vazirani')↪

Return the canonical partition of 𝐺.

INPUT:
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before computing the canonical partition of 𝐺, we
shall ensure that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
OUTPUT:

• It returns a list of (partition) sets of vertices, each of which sets is a maximal barrier.
ALGORITHM:

Algorithm 5 : Canonical Partition of a matching covered graph
1: if perfect_matching is None then ⊳ 𝒪(1)
2: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

3: end if
4: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
5: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
6: end if
7: if matching_covered_check is True then ⊳ 𝒪(1)
8: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
9: return ‘𝐺 is not matching covered.’ ⊳ Canonical Partition is defined for a matching

covered graph
10: end if
11: end if
12: 𝑍 ← 𝑉 ⊳ Make a copy of the set of vertices
13: ℬ ← [ ] ⊳ Initialize the list of maximal barriers
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14: for 𝑣 in 𝑍 do ⊳ 𝒪(|𝑉|)
15: 𝐵 ← G.maximal_barrier_in_matching_covered_graph(𝑣, perfect_matching

=𝑀, matching_covered_check=False) ⊳ 𝒪(|𝐸|); compute the maximal barrier
containing 𝑣

16: Append 𝐵 to ℬ ⊳ 𝐵 is the maximal barrier containing 𝑣
17: 𝑍 ← 𝑍 − 𝐵 ⊳ Kotzig relation is an equivalence relation for a matching covered graph
18: end for
19: return ℬ

TIME COMPLEXITY: 𝒪(|𝐸| ⋅ |𝑉|)
EXAMPLE:

• In bipartite matching covered graphs, each of the color class constitute the canonical partition.
• In bicritical graphs, sets each containing an individual vertex, constitute the canonical partition.

3.3 TIGHT CUTS

Recall, for a graph 𝐺, the notation 𝜕(𝑣) is used to denote the set of edges that are incident at the vertex 𝑣.
Analogously, for a set 𝑆 ⊆ 𝑉(𝐺), the notation 𝜕(𝑆) denotes the set of edges that have one end in 𝑆 and
the other end in 𝑆 ∶= 𝑉(𝐺) − 𝑆. This leads us to the definition of a cut.
A cut 𝐶 of a matching covered graph 𝐺 is called a tight cut if |𝑀 ∩ 𝐶| = 1, for each perfect matching
𝑀 of 𝐺. This tight cut plays an important role in the well-known tight cut decomposition of matching
covered graphs, which we will discuss subsequently.
We discuss below two special types of tight cuts in matching covered graphs. Let 𝐵 be any barrier of a
matching covered graph 𝐺. We state the following proposition without the proof.

Proposition 3.12. Let 𝐵 be a barrier in a matchable graph 𝐺, and let 𝑀 be any perfect matching
of 𝐺. Then:

1. if 𝐾 is an odd component of 𝐺−𝐵, then 𝑀 ∩ 𝜕(𝐾) has precisely one edge; and if 𝑣 is the end
of that edge in 𝑉(𝐾), then 𝑀 ∩ 𝐸(𝐾) is a perfect matching of 𝐾 − 𝑣, and

2. if 𝐿 is an even component of 𝐺 −𝐵, then 𝑀 ∩𝐸(𝐿) is a perfect matching of 𝐿 and no edge in
𝜕(𝐿) is matchable in 𝐺.

It follows from Proposition 3.12 that, for each (odd) component 𝐾 of 𝐺 − 𝐵, the cut 𝜕(𝐾) is a tight cut in
𝐺. Such a tight cut, that arises from the odd component of a barrier, is known as a barrier cut.
For matching covered graph 𝐺 a 2-vertex cut {𝑢, 𝑣} of 𝐺 that is not a barrier, is called a 2-separation. If
{𝑢, 𝑣} is a 2-separation of 𝐺, then each component of 𝐺−𝑢− 𝑣 is even. Suppose that 𝐻1 is the union of a
nonempty proper subset of the components of𝐺−𝑢−𝑣, and𝐻2 is the union of the remaining components
of𝐺−𝑢−𝑣. Then𝐻1 and𝐻2 are two vertex-disjoint even order subgraphs whose union is𝐺−𝑢−𝑣.
With any such expression of 𝐺 − 𝑢 − 𝑣 as the union of 𝐻1 and 𝐻2, we may associate the cuts 𝐶 ∶=
𝜕(𝑉(𝐻1) + 𝑣) and 𝐷 ∶= 𝜕(𝑉(𝐻2) + 𝑣), and it is easy to see that both 𝐶 and 𝐷 are tight. Such a tight cut
that arises in this manner is known as 2-separation cut of 𝐺.
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Interestingly matching covered graph may have a tight cut which is neither a barrier cut, nor a 2-separation
cut. Figure 2 shows an example for the same [19].

𝐶

𝐷

Figure 2: The cut 𝐶 (shown in bold blue) is not an ELP cut, but 𝐷 (shown in dashed red) is a 2-separation
cut

In 1982, Edmonds, Lovász and Pulleyblank [10] proved the following theorem.
ELP Theorem [10]

Theorem 3.13. If a matching covered graph has a nontrivial tight cut then it has a nontrivial
barrier cut or a (nontrivial) 2-separation cut.

Carvalho, Lucchesi and Murty refer to this assertion as the ELP Theorem and use the term ELP cut to
mean either a barrier cut or a 2-separation cut.

3.3.1 tight_cut_decomposition()
A matching covered graph free of tight cuts is called a brace if it is bipartite and a brick if it is
nonbipartite.

Tight cut decomposition: Given any matching covered graph 𝐺, we may apply to it a procedure,
called a tight cut decomposition of 𝐺, which produces a list of bricks and braces. If G itself is
a brick or a brace then the list consists of just 𝐺. Otherwise, let 𝐶 be any nontrivial tight cut of
𝐺. Then, both 𝐶-contractions of 𝐺 are matching covered. One may recursively apply the tight
cut decomposition procedure to each 𝐶-contraction of 𝐺, and then combine the resulting lists to
produce a tight cut decomposition of 𝐺 itself.

Lovász [18] proved the following remarkable result on tight cut decomposition.
The unique decomposition theorem [18])

Theorem 3.14. Any two applications of the tight cut decomposition procedure to a matching
covered graph 𝐺 produce the same list of bricks and braces, up to multiple edges.

This raises the following question.

Problem 3.15. Given a matching covered graph 𝐺, find one of its tight cut decomposition.
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Let’s define some notations as per the paper entitled “On a Conjecture of Lovász Concerning Bricks: II.
Bricks of Finite Characteristic” [3] which shall be helpful in determining the structure of the output in
the method tight_cut_decomposition(). Let 𝐺 be a matching covered graph. Let 𝐶 ∶= 𝜕(𝑋) and
𝐷 ∶= 𝜕(𝑌) be two odd cuts of 𝐺. The four sets 𝑋 ∩𝑌, 𝑋 ∩𝑌, 𝑋 ∩𝑌 and 𝑋 ∩𝑌 are the quadrants defined
by 𝐶 and 𝐷. The cuts 𝐶 and 𝐷 cross if each of these four quadrants is nonnull. A collection 𝐶 of cuts of 𝐺
is laminar if no two of its members cross. A set 𝒞 of laminar nontrivial tight cuts is called a maximal set/
collection of laminar nontrivial tight cuts if there does not exist any nontrivial tight cut in𝐺 that is distinct
from and laminar to each of the nontrivial tight cuts in 𝒞. The following interesting theorem concerning
laminar nontrivial tight cuts conjectured by Carvalho, Lucchesi and Murty [4] and proved by Chen, Feng,
Lu, Lucchesi, and Zhang [7]:

Laminar ELP theorem [7]

Theorem 3.16. If 𝐶 is a tight cut in a matching covered graph 𝐺, then there exists either a barrier
cut or a 2-separation cut in 𝐺, that is laminar to 𝐶.

The concerned method shall output a maximal set of laminar nontrivial tight cuts (in fact non trivial ELP
cuts), so that the application of the tight cut decomposition procedure on 𝐺 with these set of nontrivial
tight cut (in any order) will result in a list of bricks and braces (that are unique up to multiple edges) of
the graph 𝐺. The following algorithm has been adopted from the book [19].

tight_cut_decomposition(perfect_matching=None, algorithm='Micali-Vazirani',
matching_covered_check=True)↪

Returns a maximal set of laminar nontrivial tight cuts of 𝐺

INPUT:
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before computing the tight cut decomposition of 𝐺,
we shall ensure that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
OUTPUT:

• A maximal set of laminar nontrivial tight cuts
ALGORITHM:
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Algorithm 6 : Tight cut decomposition of a matching covered graph 𝐺 [19]
1: if perfect_matching is None then ⊳ 𝒪(1)
2: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

3: end if
4: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
5: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
6: end if
7: if matching_covered_check is True then ⊳ 𝒪(1)
8: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
9: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)

10: end if
11: end if
12: if 𝐺 is bipartite then ⊳ 𝒪(|𝐸| + |𝑉|)
13: Use G.is_brace() algorithm to either attest that𝐺 is a brace, or otherwise find a nontrivial

tight cut 𝐶. ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
14: else ⊳ 𝐺 is nonbipartite
15: Use G.is_brick() algorithm to either attest that𝐺 is a brick, or otherwise find a nontrivial

tight cut 𝐶. ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
16: end if
17: Let 𝐻 and 𝐽 be the 𝐶 contraction of 𝐺. Repeat the above procedure to determine if 𝐻 and 𝐽

are brick/ brace, or otherwise obtain a nontrivial tight cut 𝐶.
18: Repeat the entire procedure until the graphs obtained are free of tight cuts. ⊳ This repetition

shall occur at most 𝒪(|𝑉|) times (described below).
19: Let 𝒞 denote the set of laminar nontrivial tight cuts obtained in this procedure
20: return 𝒞

TIME COMPLEXITY:
Note that the number of nontrivial tight cuts of the tight cut decomposition is at most |𝑉|2 . Thus the
algorithm runs in 𝒪(|𝐸| ⋅ |𝑉|2) time.

3.3.2 bricks_and_braces()
In the previous section, we saw that for a matching covered graph 𝐺, the list of the underlying simple
graphs of each of its bricks and the braces, is an invariant. The following method shall list down the
underlying simple graphs of all bricks and braces of a matching covered graph 𝐺. This algorithm has
been adopted from the book [19].

bricks_and_braces(perfect_matching=None, algorithm='Micali-Vazirani',
matching_covered_check=True, only_brick=False, only_brace=False)↪

Returns the list of bricks and braces of the matching covered graph 𝐺, that are invariant of 𝐺 (up
to multiple edges)

INPUT:
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
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If set to None, a maximum matching is computed using the other parameters.
• matching_covered_check – (default: True); Before computing the list of bricks and braces of 𝐺,

we shall ensure that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
• only_brick – (default: False); if set to True, outputs only the list of bricks.
• only_brace – (default: False); if set to True, outputs only the list of braces.

OUTPUT:
• A list of bricks and braces

ALGORITHM:
Algorithm 7 : Bricks and Braces of a matching covered graph 𝐺 [19]

1: if perfect_matching is None then ⊳ 𝒪(1)
2: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

3: end if
4: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
5: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
6: end if
7: if matching_covered_check is True then ⊳ 𝒪(1)
8: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
9: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)

10: end if
11: end if
12: if 𝐺 is bipartite then ⊳ 𝒪(|𝐸| + |𝑉|)
13: Use G.is_brace() algorithm to either attest that𝐺 is a brace, or otherwise find a nontrivial

tight cut 𝐶. ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
14: else ⊳ 𝐺 is nonbipartite
15: Use G.is_brick() algorithm to either attest that𝐺 is a brick, or otherwise find a nontrivial

tight cut 𝐶. ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
16: end if
17: Let 𝐻 and 𝐽 be the 𝐶 contraction of 𝐺. Repeat the above procedure to determine if 𝐻 and 𝐽

are brick/ brace, or otherwise obtain a nontrivial tight cut 𝐶.
18: Repeat the entire procedure until the graphs obtained are free of tight cuts. ⊳ This repetition

shall occur at most 𝒪(|𝑉|) times (described below).
19: Let 𝛺 denote the final list of bricks and braces
20: return 𝛺
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TIME COMPLEXITY:
Note that the number of nontrivial tight cuts of the tight cut decomposition is at most |𝑉|2 . Thus the
algorithm runs in 𝒪(|𝐸| ⋅ |𝑉|2) time.

3.3.3 number_of_bricks()
One particular consequence of Lovász’s Theorem is that any two tight cut decompositions of a given
matching covered graph 𝐺 yield the same numbers of bricks and braces. Carvalho, Lucchessi and Murty
[3] refer to these two invariants as the numbers of bricks, denoted as 𝑏(𝐺) and the number of braces,
denoted as 𝑏′(𝐺) of 𝐺, respectively.
The following method shall output the ‘number of bricks’ invariant of a matching covered graph 𝐺.

no_of_bricks(perfect_matching=None, algorithm='Micali-Vazirani',
matching_covered_check=True)↪

Returns the number of bricks of the matching covered graph 𝐺, aka 𝑏(𝐺), which is an invariant of
𝐺.

INPUT:
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before computing the number of bricks of 𝐺, we
shall ensure that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
OUTPUT:

• The number of bricks of 𝐺, aka 𝑏(𝐺)
ALGORITHM:

Algorithm 8 : Number of bricks of a matching covered graph 𝐺 [19]
1: if perfect_matching is None then ⊳ 𝒪(1)
2: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

3: end if
4: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
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5: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
6: end if
7: if matching_covered_check is True then ⊳ 𝒪(1)
8: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
9: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)

10: end if
11: end if
12: Find the list of bricks of 𝐺 using G.number_of_bricks() ⊳ 𝒪(|𝐸| ⋅ |𝑉|2)
13: 𝑏 ← the number of bricks of 𝐺
14: return 𝑏

TIME COMPLEXITY:
Note that the number of nontrivial tight cuts of the tight cut decomposition is at most |𝑉|2 . Thus the
algorithm runs in 𝒪(|𝐸| ⋅ |𝑉|2) time.

3.3.4 number_of_braces()
The following method shall output the ‘number of braces’ invariant of a matching covered graph 𝐺.

no_of_braces(perfect_matching=None, algorithm='Micali-Vazirani',
matching_covered_check=True)↪

Returns the number of braces of the matching covered graph 𝐺, aka 𝑏′(𝐺), which is an invariant of
𝐺.

INPUT:
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before computing the number of braces of 𝐺, we
shall ensure that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
OUTPUT:

• The number of braces of 𝐺, aka 𝑏′(𝐺)
ALGORITHM:
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Algorithm 9 : Number of braces of a matching covered graph 𝐺 [19]
1: if perfect_matching is None then ⊳ 𝒪(1)
2: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

3: end if
4: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
5: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
6: end if
7: if matching_covered_check is True then ⊳ 𝒪(1)
8: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
9: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)

10: end if
11: end if
12: Find the list of braces of 𝐺 using G.number_of_braces() ⊳ 𝒪(|𝐸| ⋅ |𝑉|2)
13: 𝑏′ ← the number of bricks of 𝐺
14: return 𝑏′

TIME COMPLEXITY:
Note that the number of nontrivial tight cuts of the tight cut decomposition is at most |𝑉|2 . Thus the
algorithm runs in 𝒪(|𝐸| ⋅ |𝑉|2) time.

3.3.5 number_of_petersen_bricks()
For a matching covered graph 𝐺, it turns out that the number of Petersen bricks, that are those bricks
whose underlying simple graph is the Petersen graph, denoted as 𝑝(𝐺), which is also an invariant of 𝐺,
plays an important role in the theory of matching covered graphs, for instance in determining the optimal
ear decomposition of a matching covered graph; see [5]. We shall implement the following function to
obtain 𝑝(𝐺) for any matching covered graph 𝐺.

no_of_bricks(perfect_matching=None, algorithm='Micali-Vazirani',
matching_covered_check=True)↪

Returns the number of petersen bricks of the matching covered graph 𝐺, aka 𝑝(𝐺), which is an
invariant of 𝐺.

INPUT:
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before computing the number of Petersen bricks of
𝐺, we shall ensure that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
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– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
OUTPUT:

• The number of Petersen bricks of 𝐺, aka 𝑝(𝐺)
ALGORITHM:

Algorithm 10 : Number of Petersen bricks of a matching covered graph 𝐺 [19]
1: if perfect_matching is None then ⊳ 𝒪(1)
2: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

3: end if
4: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
5: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
6: end if
7: if matching_covered_check is True then ⊳ 𝒪(1)
8: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
9: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)

10: end if
11: end if
12: Find the list of bricks of 𝐺 using G.number_of_bricks() ⊳ 𝒪(|𝐸| ⋅ |𝑉|2)
13: 𝑝 ← the number of Petersen bricks of 𝐺
14: return 𝑝

TIME COMPLEXITY:
Note that the number of nontrivial tight cuts of the tight cut decomposition is at most |𝑉|2 . Thus the
algorithm runs in 𝒪(|𝐸| ⋅ |𝑉|2) time.

3.4 BRICKS AND BRACES

In this section, we shall investigate some fundamental algorithms for instance — checking if a given
matching covered graph is a brick or a brace; also we shall see some interesting family of graphs that play
a crucial role in generating (all) bricks and braces (which we will see in chapter ‘Strictly thin edges in
Bricks and Braces’).

3.4.1 is_brick()
The ELP Theorem implies the following characterization of bricks, as discovered by Edmonds, Lovász
and Pulleyblank [10].

Characterization of Bricks [10]

Theorem 3.17. A nonbipartite matching covered graph is a brick if and only if it is 3-connected
and bicritical.
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Given a matching covered nonbipartite graph 𝐺, the following method shall determine whether it is a
brick or shall output a nontrivial (ELP) tight cut.

is_brick(perfect_matching=None, algorithm='Micali-Vazirani', matching_covered_check=True,
conp_certificate=False)↪

Checks whether the matching covered nonbipartite graph 𝐺 is a brick.

INPUT:
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before checking if 𝐺 is a brick, we shall ensure that
𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
• conp_certificate – boolean (default: True); when set to True outputs a nontrivial tight cut of
𝐺, if 𝐺 is not a brick.

OUTPUT:
A boolean

ALGORITHM:
Algorithm 11 : Check if 𝐺 is a brick [19]

1: if 𝐺 is bipartite then ⊳ 𝒪(|𝐸| + |𝑉|)
2: return ‘𝐺 is bipartite’ ⊳ 𝒪(1)
3: end if
4: if perfect_matching is None then ⊳ 𝒪(1)
5: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

6: end if
7: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
8: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
9: end if

10: if matching_covered_check is True then ⊳ 𝒪(1)
11: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
12: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
13: end if
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14: end if
15: Check if 𝐺 is bicritical thru G.is_bicritical() ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
16: if 𝐺 is not bicritical then
17: if conp_certificate is True then
18: Obtain {𝑢, 𝑣} as an output of the above function call such that𝐺−𝑢−𝑣 is not matchable.
19: 𝐵 ← a maximal (nontrivial) barrier of 𝐺 containing both 𝑢 and 𝑣 ⊳ 𝒪(|𝐸|); obtained

using maximal_barrier_in_matching_covered_graph()
20: 𝑋 ← A nontrivial odd component of 𝐺 − 𝐵.
21: return False, a nontrivial barrier cut 𝜕(𝑋) of 𝐺
22: end if
23: return False
24: end if
25: Check if 𝐺 is three vertex connected ⊳ 𝒪(|𝐸| + |𝑉|); see tri_connectivity()
26: if 𝐺 is not three vertex connected then
27: if conp_certificate is True then
28: Let {𝑢, 𝑣} be a two vertex cut of 𝐺
29: Let ℰ denote the set of even components of 𝐺 − 𝑢 − 𝑣.
30: 𝑋 ← any arbitrary even component in ℰ
31: 𝑋 ← 𝑋 + 𝑢
32: return False, a (nontrivial) 2-separation cut 𝜕(𝑋) of 𝐺
33: end if
34: return False
35: end if
36: return True

TIME COMPLEXITY: 𝒪(|𝐸| ⋅ |𝑉|).

3.4.2 is_brace()
We state the following theorem (without proof) from [19], which shall be useful in developing an algorithm
to check whether the given bipartite matching covered graph is a brace or not.

Characterization of Braces [19]

Theorem 3.18. Let 𝐺 be a connected bipartite graph of order six or more and let 𝑀 be a perfect
matching of 𝐺. It holds that 𝐺 is a brace if and only if 𝐺 − 𝑢 − 𝑣 is matching covered, for every
edge 𝑢𝑣 of 𝑀.

The following method shall either attest the given bipartite matching covered graph is a brace or shall
output a nontrivial tight cut of it.

is_brace(perfect_matching=None, algorithm='Micali-Vazirani', matching_covered_check=True,
conp_certificate=False)↪

Checks whether the matching covered bipartite graph 𝐺 is a brace.

INPUT:
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• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any
valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before checking if 𝐺 is a brace, we shall ensure that
𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
• conp_certificate – boolean (default: True); when set to True outputs a nontrivial tight cut of
𝐺, if 𝐺 is not a brace.

OUTPUT:
A boolean

ALGORITHM:
Algorithm 12 : Check if 𝐺 is a brace [19]

1: if 𝐺 is not bipartite then ⊳ 𝒪(|𝐸| + |𝑉|)
2: return ‘𝐺 is not bipartite’ ⊳ 𝒪(1)
3: end if
4: Let 𝐴 and 𝐵 be the color class of 𝐺.
5: if perfect_matching is None then ⊳ 𝒪(1)
6: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

7: end if
8: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
9: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)

10: end if
11: if matching_covered_check is True then ⊳ 𝒪(1)
12: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
13: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
14: end if
15: end if
16: for each edge 𝑢𝑣 in 𝑀 do ⊳ 𝒪(|𝑉|); let 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵
17: Check if 𝐺 − 𝑢 − 𝑣 is matching covered using G.is_matching_covered() ⊳

𝒪(|𝐸| + |𝑉|)
18: if 𝐺 − 𝑢 − 𝑣 is not matching covered then
19: if co_np certificate is True then
20: Construct the digraph 𝐷 of 𝐺 − 𝑢 − 𝑣 as defined in Theorem 3.7 ⊳ 𝒪(|𝐸| + |𝑉|);
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clearly, 𝐷 is not strongly connected
21: The linear time search determines a directed cut 𝐶 in 𝐷. ⊳ 𝒪(|𝐸| + |𝑉|)
22: By definition of 𝐷, it follows that 𝐶 ⊆ 𝐸(𝐺 − 𝑢 − 𝑣) −𝑀.
23: Thus, 𝐶 is a cut of 𝐺 − 𝑢 − 𝑣 which has a shore 𝑋 such that every edge of 𝐶 is

incident with a vertex in 𝑋 ∩ 𝐵.
24: 𝜕(𝑋 + 𝑣) is a nontrivial barrier of 𝐺.
25: return False, a (nontrivial) tight cut 𝜕(𝑋 + 𝑣) of 𝐺
26: end if
27: return False
28: end if
29: end for
30: return True

TIME COMPLEXITY: 𝒪 ((|𝐸| + |𝑉|) ⋅ |𝑉|) or effectively 𝒪(|𝐸| ⋅ |𝑉|).

3.5 NOTABLE FAMILIES OF BRICKS AND BRACES

There are several notable families of bricks and braces which play important roles in the theory of matching
covered graphs [19]. We introduce some of them in this section. These families play significant roles in
the works of McCuaig [20] and Norine and Thomas [23], which are described in Section Strictly ‘thin
edges in bricks and braces’.

CircularLadderGraph()

static CircularLadderGraph(n)

Returns the Circular ladder graph (with 2 × 𝑛 nodes).
The Circular ladder graph, aka Prism graphℙ2𝑛, for 𝑛 ⩾ 3, is the graph obtained from two disjoint
cycles

𝑢1𝑢2𝑢3…𝑢𝑛𝑢1 and 𝑣1𝑣2… 𝑣𝑛𝑣1
of length 𝑛 by the addition of the 𝑛 edges 𝑢𝑖𝑣𝑖, 𝑖 = 1, 2,… , 𝑛.

The static method CircularLadderGraph, listed in the Section ‘Existing Functions in SageMath’,
generates a circular ladder graph on 2×𝑛 vertices for an input 𝑛. Followingly, we represent some members
of this family.
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(a) CircularLadderGraph(3) (b) CirclularLadderGraph(4)

(c) CircularLadderGraph(5) (d) CirclularLadderGraph(6)

Figure 3: The family of circular ladder graphs

3.5.1 MöbiusLadderGraph()

static MöbiusLadderGraph(n)

Returns the Möbius ladder graph (with 2 × 𝑛 nodes).
The Möbius ladder graph 𝕄2𝑛, for 𝑛 ⩾ 2, is the graph obtained from a cycle

𝑣1𝑣2… 𝑣2𝑛𝑣1

of length 2𝑛 by the addition of the 𝑛 chords 𝑣𝑖𝑣𝑖+𝑛, for 1 ⩽ 𝑖 ⩽ 𝑛, joining antipodal pairs of vertices
of the cycle.

Followingly, we represent some members of this family.
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(a) MöbiusLadderGraph(2) (b) MöbiusLadderGraph(3)

(c) MöbiusLadderGraph(4) (d) MöbiusLadderGraph(5)
Figure 4: The family of möbius ladder graphs

WheelGraph()

static WheelGraph(n)

Returns the Wheel graph (with 𝑛 nodes).
The Wheel graph 𝕎𝑛, for 𝑛 ⩾ 4, is the graph obtained from a cycle

𝑣1𝑣2… 𝑣𝑛−1𝑣1

of length 𝑛 − 1, called the rim of 𝕎𝑛, by the addition a universal vertex, called hub ℎ. Note that
wheels on an even number of vertices, aka 𝑊2𝑘 for some 𝑘 ⩾ 2, are matching covered — in fact,
bricks.

The static method WheelGraph, listed in the Section ‘Existing Functions in SageMath’, generates a wheel
graph on 𝑛 vertices for an input 𝑛. Followingly, we represent some members of this family, that are
matching covered — in fact, bricks.
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(a) WheelGraph(4) (b) WheelGraph(6)

(c) WheelGraph(8) (d) WheelGraph(10)
Figure 5: The family of wheel graphs, that are matching covered

3.5.2 BiwheelGraph()

static BiwheelGraph(n)

Returns the Biwheel graph with 2 × 𝑛 nodes.
The Biwheel graph 𝔹2𝑛, for 𝑛 ⩾ 4, is the bipartite graph obtained from a cycle

𝑣1𝑣2… 𝑣2𝑛−2𝑣1

of length 2𝑛 − 2, called the rim of 𝔹2𝑛, by the addition of two vertices, ℎ1 and ℎ2, called the hubs
of 𝔹2𝑛, and by the addition of edges ℎ1𝑣1, ℎ1𝑣3,… , ℎ1𝑣2𝑛−3 and edges ℎ2𝑣2, ℎ2𝑣4,… , ℎ2𝑣2𝑛−2.

Followingly, we represent some members of this family.
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(a) BiwheelGraph(8) (b) BiwheelGraph(10)

(c) BiwheelGraph(12) (d) BiwheelGraph(14)
Figure 6: The family of biwheel graphs

3.5.3 TruncatedBiwheelGraph()

static TruncatedBiwheelGraph(n)

Returns the Truncated biwheel graph with 2 × 𝑛 nodes.
The Truncated biwheel graph 𝕋2𝑛, for 𝑛 ⩾ 3, is the graph obtained from a path 𝑣1𝑣2… 𝑣2𝑛−2
of length 2𝑛 − 3, by the addition of two vertices, ℎ1 and ℎ2, and by the addition of edges
ℎ1𝑣1, ℎ1𝑣3,… , ℎ1𝑣2𝑛−3, edges ℎ2𝑣2, ℎ2𝑣4,… , ℎ2𝑣2𝑛−2 and edges ℎ1𝑣2𝑛−2 and ℎ2𝑣1.

Followingly, we represent some members of this family.
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(a) TruncatedBiwheelGraph(3) (b) TruncatedBiwheelGraph(4)

(c) TruncatedBiwheelGraph(5) (d) TruncatedBiwheelGraph(6)
Figure 7: The family of truncated biwheel graphs

3.5.4 StaircaseGraph()

static StaircaseGraph(n)

Returns the Staircase graph with 2 × 𝑛 nodes.
Consider the Ladder graph 𝕃2𝑛−2 obtained from two disjoint paths 𝑢1𝑢2…𝑢𝑛−1 and 𝑣1𝑣2… 𝑣𝑛−1 by
adding, for 1 ⩽ 𝑖 ⩽ 𝑛 − 1, an edge joining 𝑢𝑖 and 𝑣𝑖. For 𝑛 ⩾ 3, the Staircase graph 𝕊2𝑛 is the
graph obtained from 𝕃2𝑛−2 by adding two new vertices 𝑥 and 𝑦, and then joining 𝑥 to 𝑢1 and 𝑣1,
the vertex 𝑦 to 𝑢𝑛−1 and 𝑣𝑛−1, and 𝑥 and 𝑦 to each other.

Followingly, we represent some members of this family.

(a) StaircaseGraph(4) (b) StaricaseGraph(5)

(c) StaircaseGraph(6) (d) StaircaseGraph(7)
Figure 8: The family of staircase graphs
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3.6 DEPENDENCE RELATION AND REMOVABLE CLASSES

Deletions and contractions of edges are two common inductive tools in graph theory. In 1999, through
their landmark paper “Ear decompositions of matching covered graphs”, Carvalho, Lucchesi and Murty
[2] introduced the notation of dependency relation and removable classes in matching covered graphs,
that are crucial for several significant results in the theory of matching covered graphs, for instance —
computing an optimal ear decomposition of a matching covered graph (which we will see in the Section
‘Ear decomposition’).

3.6.1 is_removable_edge()
An edge 𝑒 of a matching covered graph 𝐺 is removable if the graph 𝐺 − 𝑒 is also matching covered.
For example, every edge of 𝐾3,3 is removable, but no edge of 𝐾4 or of 𝐶6 is. This raises a decision
problem.

Decision Problem 3.19. Given a matching covered graph 𝐺 and an edge 𝑒; decide whether 𝑒 is
removable in 𝐺.

It turns out that we may effectively use the concept of 𝑀-alternating path search, that was introduced in
is_bicritical() to answer the above question.

is_removable_edge(e, perfect_matching=None, algorithm='Micali-Vazirani',
matching_covered_check=True)↪

Checks whether the edge 𝑒 is removable in the matching covered graph 𝐺.

INPUT:
• e – an edge of the graph 𝐺
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before computing the number of Petersen bricks of
𝐺, we shall ensure that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
OUTPUT:

A boolean
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ALGORITHM:
Algorithm 13 : Check if 𝑒 is removable in the matching covered graph 𝐺

1: if perfect_matching is None then ⊳ 𝒪(1)
2: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

3: end if
4: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
5: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
6: end if
7: if matching_covered_check is True then ⊳ 𝒪(1)
8: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
9: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)

10: end if
11: end if
12: check ← False
13: if 𝑒 is not in 𝑀 then
14: check ← True if 𝐺 − 𝑒 is matching covered using 𝑀 ⊳ 𝒪(|𝐸| + |𝑉|) if 𝐺 − 𝑒 is bipartite,

otherwise 𝒪(|𝐸| ⋅ |𝑉|); see is_matching_covered()
15: else
16: Use 𝑀-alternating path search to find a perfect matching 𝑁 of 𝐺, not containing 𝑒. ⊳

𝒪(|𝐸|); see is_matching_covered()
17: check ← True if 𝐺 − 𝑒 is matching covered using 𝑁 ⊳ 𝒪(|𝐸| + |𝑉|) if 𝐺 − 𝑒 is bipartite,

otherwise 𝒪(|𝐸| ⋅ |𝑉|); see is_matching_covered()
18: end if
19: return check

TIME COMPLEXITY:
• If we check whether 𝐺 is matching covered, the time complexity is 𝒪(|𝐸| ⋅ |𝑉|), or otherwise
• if 𝐺 is nonbipartite the time complexity is 𝒪(|𝐸| ⋅ |𝑉|), or otherwise
• if a perfect matching 𝑀 is given the complexity is 𝒪(|𝐸| + |𝑉|), else it is 𝒪(|𝐸| ⋅√|𝑉|).

3.6.2 removable_edges()
Subsequently, we ask the following question.

Problem 3.20. Given a matching covered graph 𝐺; find all of its removable edges.

The following method shall list out all the removable edges of a matching covered graph 𝐺.

removable_edges(perfect_matching=None, algorithm='Micali-Vazirani',
matching_covered_check=True, one_output=False)↪

Returns the set of removable edges in the matching covered graph 𝐺.

INPUT:
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• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any
valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before computing the number of Petersen bricks of
𝐺, we shall ensure that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
• one_output – boolean (default: False); when set to True, the algorithm shall terminate as soon

as a single removable edge is detected.
OUTPUT:

A set of edges consisting of all removable edges in 𝐺
ALGORITHM:

Algorithm 14 : Compute all removable edges in the matching covered graph 𝐺
1: if perfect_matching is None then ⊳ 𝒪(1)
2: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

3: end if
4: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
5: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
6: end if
7: if matching_covered_check is True then ⊳ 𝒪(1)
8: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
9: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)

10: end if
11: end if
12: 𝑅 ← ∅ ⊳ Initialize the set of all removable edges in 𝐺
13: for each edge 𝑒 in 𝐸 do ⊳ 𝒪(|𝐸|)
14: check ← False
15: check ← True if 𝑒 is removable in 𝐺 (check using 𝑀 thru is_removable_edge() ⊳

𝒪(|𝐸| ⋅ |𝑉|) if 𝐺 is nonbipartite else 𝒪(|𝐸| + |𝑉|)
16: if check then
17: 𝑅 ← 𝑅 + 𝑒
18: end if
19: end for
20: return 𝑅
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TIME COMPLEXITY: 𝒪(|𝐸|2 ⋅ |𝑉|) if 𝐺 is nonbipartite, or otherwise 𝒪((|𝐸| + |𝑉|) ⋅ |𝐸|).

3.6.3 is_removable_doubleton()
A pair {𝑒, 𝑓} of edges of a matching covered graph 𝐺 is a removable doubleton if 𝐺 − 𝑒 − 𝑓 is matching
covered, but neither 𝐺−𝑒 nor 𝐺−𝑓 is. For example, each of 𝐾4 and 𝐶6 have three removable doubletons,
and the bicornℍ8 has two. Clearly, if {𝑒, 𝑓} is a removable doubleton in a matching covered graph 𝐺, then
they are nonadjacent. This raises the following decision problem.

Decision Problem 3.21. Given a matching covered graph 𝐺 and a pair of distinct nonadjacent
edges 𝑒 and 𝑓; decide whether 𝑒 and 𝑓 constitute a removable doubleton in 𝐺.

We shall implement the following algorithm to effectively answer the above decision problem.

is_removable_doubleton(e, f, perfect_matching=None, algorithm='Micali-Vazirani',
matching_covered_check=True, removable_edegs=Flase)↪

Checks if {𝑒, 𝑓} is a removable doubleton in the matching covered graph 𝐺.

INPUT:
• 𝑒 and 𝑓 – a pair of distinct nonadjacent edges of 𝐺
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before computing the number of Petersen bricks of
𝐺, we shall ensure that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
• removable_edges – boolean (default: False); when set to True shall output the list of removable

edges as well.
OUTPUT:

A boolean
ALGORITHM:
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Algorithm 15 : Check if {𝑒, 𝑓} constitutes a removable doubleton in 𝐺
1: if 𝑒 and 𝑓 have at least one common incidence vertex then ⊳ 𝒪(1)
2: return ‘𝑒 and 𝑓 should be distinct and nonadjacent.’ ⊳ 𝒪(1)
3: end if
4: if perfect_matching is None then ⊳ 𝒪(1)
5: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

6: end if
7: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
8: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
9: end if

10: if matching_covered_check is True then ⊳ 𝒪(1)
11: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
12: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
13: end if
14: end if
15: if 𝐺 is bipartite then ⊳ 𝒪(|𝐸| + |𝑉|)
16: return False
17: end if
18: check ← False
19: if 𝑒 ∈ 𝑀 and 𝑓 ∉ 𝑀 or 𝑒 ∉ 𝑀 and 𝑓 ∈ 𝑀 then
20: return check
21: else if 𝑒, 𝑓 ∈ 𝑀 then
22: Use 𝑀-alternating path search to find a perfect matching 𝑁 of 𝐺 − 𝑒 − 𝑓. ⊳ 𝒪(|𝐸|); see

is_matching_covered()
23: check ← True if 𝐺 − 𝑒 − 𝑓 is matching covered using 𝑁 ⊳ 𝒪(|𝐸| ⋅ |𝑉|); see

is_matching_covered()
24: else
25: check ← True if 𝐺 − 𝑒 − 𝑓 is matching covered using 𝑀 ⊳ 𝒪(|𝐸| ⋅ |𝑉|); see

is_matching_covered()
26: end if
27: return check

TIME COMPLEXITY: 𝒪(|𝐸| ⋅ |𝑉|)

3.6.4 removable_doubletons()
Subsequently, we ask the following question.

Problem 3.22. Given a matching covered graph 𝐺; find all of its removable doubletons.

The following method shall list out all the removable doubletons of a matching covered graph 𝐺.

removable_doubletons(perfect_matching=None, algorithm='Micali-Vazirani',
matching_covered_check=True, one_output=False)↪

Returns the set of removable doubletons in the matching covered graph 𝐺.
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INPUT:
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before computing the number of Petersen bricks of
𝐺, we shall ensure that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
• one_output – boolean (default: False); when set to True, the algorithm shall terminate as soon

as a single removable doubleton is detected.
OUTPUT:

A set of pair of edges consisting of all removable doubletons in 𝐺
ALGORITHM:

Algorithm 16 : Compute all removable doubletons in the matching covered graph 𝐺
1: if perfect_matching is None then ⊳ 𝒪(1)
2: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

3: end if
4: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
5: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
6: end if
7: if matching_covered_check is True then ⊳ 𝒪(1)
8: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
9: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)

10: end if
11: end if
12: if 𝐺 is bipartite then ⊳ 𝒪(|𝐸| + |𝑉|)
13: return ∅
14: end if
15: 𝑅 ←the set of removable edges obtained using removable_edges()
16: 𝐸′ ← 𝐸 − 𝑅
17: 𝑇 ← ∅ ⊳ Initialize the set of all removable doubletons in 𝐺
18: for each pair of distinct and nonadjacent edges 𝑒, 𝑓 in 𝐸′ do ⊳ 𝒪(|𝐸|)
19: check ← False
20: check ← True if {𝑒, 𝑓} constitute a removable doubleton in 𝐺 (check using 𝑀 thru
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is_removable_doubleton() ⊳ 𝒪(|𝐸| ⋅ |𝑉|) if 𝐺 is nonbipartite else 𝒪(|𝐸| + |𝑉|)
21: if check then
22: 𝑇 ← 𝑇 + {𝑒, 𝑓}
23: 𝐸′ ← 𝐸′ − 𝑒 − 𝑓
24: end if
25: end for
26: return 𝑇

TIME COMPLEXITY: 𝒪(|𝐸|2 ⋅ |𝑉|)

3.7 EAR DECOMPOSITION

In this section, we will discuss about ear decomposition

3.7.1 matching_covered_ear_decomposition()
The ear decomposition procedure has played a significant role in the theory of matching covered graph,
as provides us with one of the excellent induction tools to investigate the properties of matching covered
graphs. Here, we state the ear decomposition theorem for matching covered graph [19]. The reader may
refer to the book by Lucchesi and Murty to delve deeper into the concept.

Ear decomposition of matching covered graph [19]

Theorem 3.23. Given any matching covered graph 𝐺 there exists a sequence

𝒢 ∶= (𝐺1 = 𝐺 ⊃ 𝐺2⋯ ⊃ 𝐺𝑟 = 𝐾2)

of conformal matching covered subgraphs of 𝐺 such that, for 1 ⩽ 𝑖 ⩽ 𝑟 − 1,

𝐺𝑖+1 = 𝐺𝑖 − 𝑅𝑖, where 𝑅𝑖 is a removable ear of 𝐺𝑖.

Reversing the order of the sequence we obtain the more traditional definition of an ear decomposition of
a matching covered graph 𝐺 as a sequence

𝐺 ∶= (𝐺1 = 𝐾2 ⊂ 𝐺2⋯ ⊂ 𝐺𝑟 = 𝐺)

of matching covered conformal subgraphs of 𝐺 such that, for 2 ⩽ 𝑖 ⩽ 𝑟,
𝐺𝑖 = 𝐺𝑖−1 + 𝑅𝑖, where 𝑅𝑖 is a removable ear of 𝐺𝑖.

The following method adopts an algorithm by Carvalho and Cheriyan [6] to implement the ear
decomposition of a matching covered graph.

matching_covered_ear_decomposition(perfect_matching=None, algorithm='Micali-Vazirani',
matching_covered_check=True)↪

Returns an ear decomposition of the matching covered graph 𝐺 alongwith its canonical partition.

INPUT:
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• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any
valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before computing the ear decomposition𝐺, we shall
ensure that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
OUTPUT:

A set of graphs, a set of ears and a partition of the vertex set.
ALGORITHM:

Algorithm 17 : Find the ear decomposition of a matching covered graph efficiently [6]
1: if perfect_matching is None then ⊳ 𝒪(1)
2: Let 𝑀 be a maximum matching of 𝐺 ⊳ 𝒪(|𝐸| ⋅

√
|𝑉|)

3: end if
4: if 𝑀 is not a perfect matching then ⊳ 𝒪(1)
5: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)
6: end if
7: if matching_covered_check is True then ⊳ 𝒪(1)
8: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
9: return ‘𝐺 is not matching covered.’ ⊳ 𝒪(1)

10: end if
11: end if
12: Let 𝑥𝑦 be any edge of 𝑀 and let subgraph 𝐻 correspond to 𝑥𝑦, and let the canonical partition

be initialized by 𝒫(𝐻)← {{𝑥}, {𝑦}}
13: while 𝐻 ≠ 𝐺 do
14: If 𝐻 is a spanning subgraph of 𝐺 then let 𝐹 ← 𝐸(𝐺) − 𝐸(𝐻), else compute 𝑌 using the

detailed explanation of this step in the text as mentioned in [6]; note that each edge 𝑒𝑗 ∈ 𝐹
corresponds to a (single) ear 𝑃𝑗 relative to 𝐻; finally, let 𝐹0 ∶= 𝐹

15: repeat
16: Let 𝐻0 ∶= 𝐻 and let 𝑝0 ∶= |||(𝐻0)|||; let 𝐹′ be the set of edges in 𝐹 that have their two

ends in distinct classes of 𝒫(𝐻); replace 𝐹 by 𝐹 − 𝐹′

17: Sequentially examine the edges of 𝐹′ and add each edge to 𝐻 as a single ear; update
𝒫(𝐻𝑜) to 𝒫(𝐻)

18: If 𝑝0 = |||𝒫(𝐻)||| and 𝐹 ≠ ∅ then find a double ear {𝑒, 𝑓} ⊆ 𝐹 by using the method in
Theorem 3.1 in [6]; remove 𝑒, 𝑓 from F and add them to 𝐻; update 𝒫(𝐻 − {𝑒, 𝑓}) to get 𝒫(𝐻)
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19: until 𝐹 = ∅
20: For each edge 𝑒𝑗 ∈ 𝐹0 take the corresponding path 𝑃𝑗 of 𝐺 (see step (2.1) in [6]), and insert

the internal nodes of 𝑃𝑗 (if any) into appropriate classes of 𝒫(𝐻) (see Proposition 2.4 in [6])
21: end while

TIME COMPLEXITY: 𝒪(|𝑉| ⋅ |𝐸|).

3.7.2 retract()
Finding whether an edge/ a pair of edges are removable or not is somewhat easier that checking the same
for an entire ear. In this context, the retract of a graph is useful. Let’s discuss the retract as described in
the book by Lucchesi and Murty [19].
Let 𝑣𝑜 be a vertex of degree two in a matching covered graph 𝐺 of order four or more, and let 𝑣1 and 𝑣2
be its two neighbours. Then 𝜕(𝑋), where 𝑋 ∶= {𝑣𝑜, 𝑣1, 𝑣2}, is a tight cut of 𝐺, and the matching covered
graph 𝐺∕𝑋 is said to be obtained from 𝐺 by the bicontraction of vertex 𝑣𝑜. Motivated by the above
considerations, we now define the notion of the retract of a matching covered graph.
The retract of a matching covered graph G, denoted by �̂�, is a matching covered graph covered graph
obtained from G by the following recursive procedure: If𝐺 has order two, or if𝐺 has no vertices of degree
two, then �̂� ∶= 𝐺; otherwise, �̂� ∶= �̂�𝑣 where 𝐺𝑣 is the graph obtained by bicontracting a vertex 𝑣 of
degree two in 𝐺. Clearly, if 𝐺 has more than one vertex of degree two, this recursive procedure is not
uniquely determined. However, it can be shown that, up to isomorphism, the retract �̂� does not depend
on the order in which the bicontractions are performed. (An inductive proof of this result first appeared in
[]).Since bicontraction preserves the property of matching covered, we conclude that �̂� is also matching
covered.
The following method computes the retract of a matching covered graph 𝐺 in linear time.

retract(perfect_matching=None, algorithm='Micali-Vazirani', matching_covered_check=True)

Returns the retract of the matching covered graph 𝐺.

INPUT:
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before computing the retract of 𝐺, we shall ensure
that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
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– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum
matching)

OUTPUT:
A graph.

ALGORITHM:
Algorithm 18 : Compute the retract of 𝐺

1: if 𝐺 is not matching covered then
2: return ‘This function is defined only for matching covered graphs.’
3: end if
4: if 𝐺 has two vertices or 𝛿(𝐺) ⩾ 3 then
5: return 𝐺
6: end if
7: Let 𝒫 ← the set of maximal even length ear in 𝐺
8: Let 𝒬← the set of maximal odd length ear in 𝐺
9: 𝐻 ← 𝐺 ⊳ Make a copy of 𝐺

10: for each path 𝑃 in 𝒫 do
11: Let 𝑢 and 𝑣 denote the ends of 𝑃.
12: 𝐻 ← 𝐻 + 𝑤, where 𝑤 is the new vertex
13: for each edge 𝑢𝑥 ∈ 𝜕𝐻(𝑢) do 𝐻 ← 𝐻 + 𝑤𝑥
14: end for
15: for each edge 𝑣𝑥 ∈ 𝜕𝐻(𝑣) do 𝐻 ← 𝐻 + 𝑣𝑥
16: end for
17: 𝐻 ← 𝐻 − 𝑃 − 𝑢 − 𝑣
18: end for
19: for each path 𝑄 in 𝒬 do
20: Let 𝑢 and 𝑣 denote the ends of 𝑄.
21: 𝐻 ← 𝐻 + 𝑢𝑣 − 𝑄
22: end for
23: return 𝐻

TIME COMPLEXITY: 𝒪(|𝐸| + |𝑉|)

3.7.3 optimal_ear()
We state the following theorem from the book of Lucchesi and Murty [19].

Theorem 3.24. Let 𝐺 be a matching covered graph. For any ear decomposition 𝒢 ∶= (𝐾2 = 𝐺1 ⊂
𝐺2⋯ ⊂ 𝐺𝑟 = 𝐺) of 𝐺,

𝑑(𝒢) ⩾ (𝑏 + 𝑝)(𝐺),
where 𝑑(𝒢) refers to the number of double ear additions in this ear decomposition procedure and
(𝑏 + 𝑝)(𝐺) refers to the sum of the number of bricks and the number of Petersen bricks of 𝐺.
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According to the above theorem, the number of double ears in any ear decomposition of a matching
covered graph 𝐺 is at least 𝑏(𝐺)+𝑝(𝐺). This bound is always attainable, as shown by Carvalho, Lucchesi
and Murty, [9], in 2002. In other words, any matching covered graph 𝐺 has an ear decomposition with
precisely 𝑏 + 𝑝 double ears. Carvalho, Lucchesi and Murty refer to such an ear decomposition as an
optimal ear decomposition of 𝐺.

Followingly we present an algorithm, adopted from Exercise 16.2.8 of [19] to find an optimal ear,
subsequently to find an optimal ear decomposition of a matching covered graph 𝐺.

optimal_ear(perfect_matching=None, algorithm='Micali-Vazirani',
matching_covered_check=True)↪

Returns an ear decomposition of the matching covered graph 𝐺.

INPUT:
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before finding an optimal ear of 𝐺, we shall ensure
that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum

matching)
OUTPUT:

An optimal ear.
ALGORITHM:

Algorithm 19 : Find an optimal ear of a matching covered graph [19]
1: if 𝐺 is isomorphic to 𝐾2 then ⊳ 𝒪(1)
2: return ‘𝐾2 has no optimal ear.’ ⊳ 𝒪(1)
3: end if
4: if 𝐺 is not matching covered then ⊳ 𝒪(|𝐸| ⋅ |𝑉|)
5: return ‘This function is defined only for matching covered graphs’ ⊳ 𝒪(1)
6: end if
7: 𝐻 ← 𝐺.𝗋𝖾𝗍𝗋𝖺𝖼𝗍()
8: if 𝐺 is bipartite then
9: 𝑟 ← a removable edge of 𝐻
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10: 𝑝 ← the odd lobe of 𝐺 that corresponds to 𝑟 in 𝐻
11: return 𝑝
12: else
13: 𝑅 ← the set of removable edges of 𝐻
14: 𝑇 ← the set of removable doubletons of 𝐻
15: if 𝑇 is not ∅ then
16: Let 𝑡 be a removable doubleton of 𝐻
17: Let 𝑝 denote the pair of two odd lobes of 𝐺 corresponding to the pair of edges 𝑡 in 𝐻
18: return 𝑝 ⊳ A pair of removable double ear
19: else
20: Obtain (𝑏 + 𝑝)(𝐻) by performing a tight cut decomposition on 𝐻
21: for each edge 𝑒 in 𝑅 do
22: Obtain (𝑏+ 𝑝)(𝐻 − 𝑒) by performing a tight cut decomposition on 𝐻 − 𝑒 ⊳ Check

if 𝑒 is (𝑏 + 𝑝)−invariant edge of 𝐻
23: if (𝑏 + 𝑝)(𝐻) == (𝑏 + 𝑝)(𝐻 − 𝑒) then
24: 𝑝 ← the odd lobe of 𝐺 that corresponds to 𝑒 in 𝐻
25: return 𝑝
26: end if ⊳ If 𝐺 has a removable edge, then 𝐺 has at least one removable edge that is

(𝑏 + 𝑝)-invariant [19]
27: end for
28: end if
29: end if

3.7.4 optimal_matching_covered_ear_decompostition()
This subsection presents the algorithm to obtain an optimal ear decomposition of a matching covered
graph 𝐺 (defined in the previous section), using the method optimal_ear().

optimal_matching_covered_ear_decomposition(perfect_matching=None,
algorithm='Micali-Vazirani', matching_covered_check=True)↪

Returns an optimal ear decomposition of the matching covered graph 𝐺.

INPUT:
• perfect_matching – (default: None); a perfect matching of the graph. It can be given using any

valid input format of Graph.
If set to None, a maximum matching is computed using the other parameters.

• matching_covered_check – (default: True); Before computing the optimal ear decomposition
𝐺, we shall ensure that 𝐺 is matching covered.
If set to False, this check is skipped.

• algorithm – string (default: ‘Micali-Vazirani’)
– ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX
– ‘LP’ uses a Linear Program formulation of the matching problem
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– ‘Micali-Vazirani’ uses Micali-Vazirani algorithm [22] (Only for unweighted maximum
matching)

OUTPUT:
A set of graphs and a set of ears.

ALGORITHM:
Algorithm 20 : Optimal ear decomposition of a matching covered graph [9]

1: if 𝐺 is not matching covered then
2: return ‘This function is defined only for matching covered graphs’
3: end if
4: if 𝐺 is 𝐾2 then
5: return the sequence (𝐺) as the ear decomposition and the empty sequence of removable

ears.
6: else
7: Recursively determine an optimal ear decomposition 𝒢 of 𝐺 − 𝑅 and the corresponding

sequence ℛ of optimal removable ears.
8: Add 𝐺 as the last element of the sequence 𝒢 and 𝑅 as the last element of the sequence ℛ.
9: end if

3.8 GENERATING BRICKS AND BRACES

In this section, we will see a generation procedure for simple bricks and simple braces, the generalization
of which were proved by Norine and Thomas [23] and McCuaig [20]. Before that let’s go through some
definitions that shall be helpful in the subsequent subsections.

3.8.1 is_strictly_thin_edge()
An edge 𝑒 of a brick 𝐺 is thin if the retract of 𝐺 − 𝑒 is a brick. Analogously, an edge 𝑒 in a brace 𝐺 is
thin if the retract of 𝐺 − 𝑒 is also a brace. A thin edge 𝑒 of a simple brick 𝐺 is strictly thin if the retract of
𝐺 − 𝑒 is a simple brick. Likewise, a thin edge of a simple brace is strictly thin if the retract of 𝐺 − 𝑒 is a
simple brace.
There exist infinite families of bricks and braces which do not have any strictly thin edges:

1. wheels,
2. biwheels,
3. truncated biwheels,
4. prisms, aka circular ladders,
5. möbius ladders and
6. staircases.

The reader may go through Chapters 17 and 18 of the book by Lucchesi and Murty [19] to learn more
about these concepts.
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The following function checks whether an edge 𝑒 of a simple brick/ a simple brace is strictly thin.

is_strictly_thin_edge(e, simple_brick_brace_check=True)

Checks whether an edge 𝑒 of a simple brick/ a simple brace is strictly thin.

INPUT:
• an edge 𝑒 of 𝐺
• simple_brick_brace_check – (default: True); Before checking whether 𝑒 is a strictly thin edge

of 𝐺, we shall ensure that 𝐺 is either a simple brick or a simple brace.
If set to False, this check is skipped.

OUTPUT:
A boolean.

ALGORITHM:
Algorithm 21 : Check if an edge 𝑒 is a strictly thin edge

1: if 𝐺 is neither a simple brick nor a simple brace then
2: return ‘This algorithm is defined only for simple bricks/ simple braces.’
3: end if
4: if 𝑒 is not a removable edge of 𝐺 then
5: return ‘The edge 𝑒 is not removable in 𝐺, therefore is not a strictly thin edge of 𝐺.’
6: end if
7: if 𝐺 is non bipartite then
8: if 𝐺 is isomorphic to a Norine-Thomas brick then
9: return ‘𝐺 is a brick that is devoid of strictly thin edges.’

10: end if
11: else
12: if 𝐺 is isomorphic to a McCuaig brace then
13: return ‘𝐺 is a brace that is devoid of strictly thin edges.’
14: end if
15: end if
16: 𝐻 ← 𝐺.retract()
17: if 𝐻 is a simple brick and 𝐺 is a simple brick then
18: return True
19: else if 𝐻 is a simple brace and 𝐺 is a simple brace then
20: return True
21: end if
22: return False

3.8.2 is_mccuaig_brace()
In 2001, in his pioneering paper entitled “Brace generation”, McCuaig [20], identified the three families
of braces that do not have strictly thin edges; those are:
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1. biwheels,
2. prisms, aka circular ladders ℙ𝑛, where 𝑛 ≡ 0 mod 4, and
3. Möbius ladders 𝕄𝑛, where 𝑛 ≡ 2 mod 4.

Lucchesi and Murty [19] referred to the union of these families as the McCuaig family of braces. No
brace in this family has strictly thin edges. More significantly, the following assertion was established in
[20]:

Strictly Thin Edge Theorem for Braces [20]

Theorem 3.25. Every simple brace of order six or more that is not a member of the McCuaig family
of braces has a strictly thin edge.

The following function investigates whether a simple brace on at least six vertices is a McCuaig brace.

is_mccuaig_brace(simple_brace_check=True, family=False)

Checks whether a simple brace on at least six vertices is a McCuaig brace.

INPUT:
• simple_brace_check – boolean (default: True); Before checking whether 𝐺 is a McCuaig brace,

we shall ensure that 𝐺 is a simple brace on at least six vertices.
If set to False, this check is skipped.

• family – boolean (default: False); If set to True, outputs the name of the family of McCuaig
braces that 𝐺 belongs to.

OUTPUT:
A boolean.

ALGORITHM:
Algorithm 22 : Check if the brace 𝐺 is a McCuaig brace [19]

1: if 𝐺 is not a simple brace on at least six vertices then
2: return ‘This algorithm is defined only for simple braces on at least six vertices.’
3: end if
4: if 𝐺 is isomorphic to a biwheel then
5: ℎ1, ℎ2 ← the two hubs of 𝐺
6: return True, ‘𝐺 is a biwheel with hubs ℎ1 and ℎ2.’
7: else if 𝐺 is isomorphic to a möbius ladder then
8: return True, ‘𝐺 is a möbius ladder.’
9: else if 𝐺 is isomorphic to a circular ladder then

10: return True, ‘𝐺 is a circular ladder.’
11: else
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12: return False, ‘𝐺 is not a McCuaig brace.’
13: end if

3.8.3 is_norine_thomas_brick()
In 2008, in a paper entitled “Brick generation”, Norine and Thomas [23] identified all the infinite families
of simple bricks that are free of strictly thin edges. They are:

1. wheels,
2. truncated biwheels,
3. prisms, aka circular ladders ℙ𝑛, where 𝑛 ≡ 2 mod 4,
4. Möbius ladders 𝕄𝑛, where 𝑛 ≡ 0 mod 4, and
5. staircases.

Lucchesi and Murty [19] refer to the union of these families of bricks as the Norine-Thomas family of
bricks. The theorem below follows from the results established in [23]:

Strictly Thin Edge Theorem for Bricks [23]

Theorem 3.26. Every simple brick which is different from the Petersen graph ℙ and which is not
a member of the Norine-Thomas family of bricks has a strictly thin edge.

The following function investigates whether a simple brick is a Norine-Thomas brick.

is_norine_thomas_brace(simple_brick_check=True, family=False)

Checks whether a simple brick is a Norine Thomas brick.

INPUT:
• simple_brick_check – boolean (default: True); Before checking whether 𝐺 is a Norine Thomas

brick, we shall ensure that 𝐺 is a simple brick.
If set to False, this check is skipped.

• family – boolean (default: False); If set to True, outputs the name of the family of Norine Thomas
brick that 𝐺 belongs to.

OUTPUT:
A boolean.

ALGORITHM:
Algorithm 23 : Check if the brick 𝐺 is a Norine Thomas brick

1: if 𝐺 is not a simple brick then
2: return ‘This algorithm is defined only for simple bricks that are not isomorphic to the

Petersen graph ℙ.’

65



3: end if
4: if 𝐺 is isomorphic to the Petersen graph ℙ then
5: return ‘This algorithm is defined only for simple bricks that are not isomorphic to the

Petersen graph ℙ.’
6: end if
7: if 𝐺 is isomorphic to a wheel then
8: ℎ ← the hubs of 𝐺
9: return True, ‘𝐺 is a wheel with the hubs ℎ.’

10: else if 𝐺 is isomorphic to a truncated biwheel then
11: return True, ‘𝐺 is isomorphic to a truncated biwheel.’
12: else if 𝐺 is isomorphic to a möbius ladder then
13: return True, ‘𝐺 is a möbius ladder.’
14: else if 𝐺 is a circular ladder then
15: return True, ‘𝐺 is a circular ladder.’
16: else
17: return False, ‘𝐺 is not a Norine Thomas brick.’
18: end if

3.8.4 mccuaig_brace_decomposition()
We state the following result of McCuaig [20] as stated in [19].

Theorem 3.27. Given any simple brace 𝐺 of order six or more, there exists a sequence

𝐺1, 𝐺2,… , 𝐺𝑘

of simple braces such that:
1. 𝐺1 is either a biwheel, or a prism, or a Möbius ladder, and 𝐺𝑘 = 𝐺, and
2. for 2 ⩽ 𝑖 ⩽ 𝑘, the graph 𝐺𝑖 is obtained from 𝐺𝑖−1 by an expansion operation.

We left it as an exercise for the reader to go through the details of the above theorem. In the following
method, we shall output a sequence of such simple braces for a given simple brace 𝐺 of order six or
more.

mccuaig_brace_decomposition(simple_brace_check=True)

Computes a McCuaig brace decomposition of a simple brace 𝐺 on at least six vertices.

INPUT:
• simple_brace_check – boolean (default: True); Before computing the McCuaig brace

decomposition of 𝐺, we shall ensure that 𝐺 is a simple brace on at least six vertices.
If set to False, this check is skipped.

OUTPUT:
A sequence of simple braces and a sequence of strictly thin edges
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ALGORITHM:
Algorithm 24 : Generating simple braces

1: if 𝐺 is not a simple brace of order six or more then
2: return ‘This algorithm is defined only for a simple brace of order six or more.’
3: end if
4: 𝒢← ∅
5: ℛ ← ∅
6: status ← False
7: while not status do
8: Let 𝑒 be a strictly thin edge in 𝐺
9: If such an edge does not exist, status ← True

10: ℛ ← ℛ + 𝑒
11: 𝒢← 𝒢 + 𝐺
12: end while
13: return 𝒢,ℛ.

3.8.5 norine_thomas_brick_decomposition()
We state the following result of Norine and Thomas [23] as stated in [19].

Theorem 3.28. Given any simple brick 𝐺, there exists a sequence

𝐺1, 𝐺2,… , 𝐺𝑘

of simple bricks such that:
1. 𝐺1 is either a wheel, or a truncated biwheel, or a prism, or a Möbius ladder, or a staircase,

or the Petersen graph, and 𝐺𝑘 = 𝐺, and
2. for 2 ⩽ 𝑖 ⩽ 𝑘, the graph 𝐺𝑖 is obtained from 𝐺𝑖−1 by an expansion operation.

We left it as an exercise for the reader to go through the details of the above theorem. In the following
method, we shall output a sequence of such simple bricks for a given simple brick 𝐺.

norine_thomas_brick_decomposition(simple_brick_check=True)

Computes a Norine Thomas brick decomposition of a simple brick 𝐺.

INPUT:
• simple_brick_check – boolean (default: True); Before computing the Norine Thomas brick

decomposition of 𝐺, we shall ensure that 𝐺 is a simple brick.
If set to False, this check is skipped.

OUTPUT:
A sequence of simple bricks and a sequence of strictly thin edges

ALGORITHM:
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Algorithm 25 : Generating simple bricks
1: if 𝐺 is not a simple brick then
2: return ‘This algorithm is defined only for simple bricks.’
3: end if
4: 𝒢← ∅
5: ℛ ← ∅
6: status ← False
7: while not status do
8: Let 𝑒 be a strictly thin edge in 𝐺
9: If such an edge does not exist, status ← True

10: ℛ ← ℛ + 𝑒
11: 𝒢← 𝒢 + 𝐺
12: end while
13: return 𝒢,ℛ.

4 About Me
This section includes some of my details concerning this open-source application.

1. Personal: Some personal details:
• Name: Janmenjaya Panda
• Contact Information:

– Email: janmenjaya.panda.22@gmail.com
– Linked In: linkedin.com/in/panda-janmenjaya/
– GitHub: github.com/Omegaconstant
– Website: janmenjaya-panda.web.app
– Technical Resume: resume

• Location: India
• Timezone: IST (GMT+5:30)
• University: Indian Institute of Technology Madras

2. Background: This module throws light upon my background :)
• The story opening:

I am currently in my fourth year pursuing a Bachelor’s degree in Mechanical Engineering
with a dual (ongoing) minor in Computing and Artificial Intelligence at the Indian Institute
of Technology Madras. Since childhood, as a naturally curious student, I have always had
a penchant for exploring mathematical concepts, often immersing myself in educational
content on platforms like Numberphile, 3b1b, Veritasium, EpsilonDelta and so on. My
formal introduction to graph theory occurred during my fourth semester through a course
titled ‘Advanced Graph Theory’ by Prof. Rajiv Misra, which sparked a deep fascination
for the subject within me. I am particularly drawn to the elegance and efficacy of abstract
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mathematical proofs. Additionally, in the course ‘HS3100: Economic Network Analysis’, I
gained insight into the practical applications of abstract graph concepts and algorithms such
as bipartite and non-bipartite matching, auctions, and graph partitioning in solving real-world
problems within economic network analysis and game theory. This exposure further solidified
my interest in leveraging graph theory for practical solutions.

• Research works:
My fascination with graphs led me to become a Young research fellow in September 2022
at the ‘Research in Algorithms and Graphs Lab’ at the Indian Institute of Technology
Madras. Under Prof. Nishad Kothari, I have been working (soon to be published) on an
alternative proof for establishing the 𝒫 characterization of the Birkhoff-von Neumann
matching covered graphs that are perfect-matching compact. The original proof uses
some heavy tools in the theory of matching covered graphs (for instance — the Norine
Thomas brick generation theorem). The objective of my research work is to obtain the 𝒫
characterization of the said graph class using the concept of removable edges. Throughout
this research, out of curiosity and as the prerequisite I enjoyed learning writing proofs in
the assignments of the course ‘CS6240: Structural Graph Theory’ by Prof. Nishad Kothari,
understanding the intricacies of the max flow-min cut algorithm, Hopcroft-Karp algorithm,
and many more in ‘CS6130: Advanced Graph Algorithms’ and approximately travelling
through the Travelling-salesman problem in the course ‘CS6841: Approximation Algorithms’
by Prof. Meghana Nasre. In December 2022, Professor Nishad Kothari introduced me to the
captivating field of matching theory through his course titled "CS6535: Matching Theory",
laying down the groundwork for my understanding of this intriguing subject. This has served
as a basis for my research and me in understanding the pseudocode, theorems and results that
are written in this proposal.
Presently, I’m also collaborating with Prof. Meghana Nasre on optimizing the SEAT2
allocation algorithm, which is essential for efficiently assigning courses to students while
considering their preferences, slot clashes, credit limit, maximum course capacities and
other restrictions, which is essentially a constrained many-many bipartite matching
(optimization) problem.

• Industrial Internships:
It was during my summer internship at the CAMP3 team in ACPC4 at Adobe this year,
that I was thrilled to see my LES5 Java Client SDK6 getting appreciation from multiple
teams due to its efficient publication of live edit deltas, that are — any changes on the
asset such as background colour change, inserting an image, acquiring a baton lock etc.,
on ACPC assets through protocol buffer encoded messages by establishing a web-socket
connection to the Adobe LES. Amidst the business needs for seamless integration tests
bridging LES and ACPC Java services, an absence of automation emerged and this SDK
marked a crucial step in automating the reliable publishing of live edit deltas from ACPC
Java services, facilitating smooth integration tests for Java clients. Besides Java, I have gained
proficiency in programming languages such as C++ through Competitive Programming.
Additionally, I have familiarity with Python, acquired through courses such as ‘CS5691:
Pattern Recognition Machine Learning’ by Prof. Arun Rajkumar, ‘ME5204: Finite Element
Methods’ by Prof. Sundararajan Natarajan’, ‘CS6370: Natural Language Processing’ by Prof.

2 Student Elective Allocation Tool 3 Copy-Archive-Move-Purge 4 Adobe Content Platform Collaboration 5 Live
Edit Service 6 Software Development Kit
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Sutanu Chakraborti, ‘CS6700: Reinforcement Learning’ by Prof. Balaraman Ravindran, and
‘CS6910: Deep Learning’ by Prof. Chandrashekhar Chellu. I also have some knowledge of
JavaScript, thanks to various online tutorials.

• Personal projects:
The above one is one of the major industry-based projects that I worked on excluding my
research works at the Indian Institute of Technology Madras (as the first person from my village
Ichhapur, Jajpur, Odisha to join the institution :)), besides exploring courses like ‘CS5020:
Non-linear optimization’, ‘CS5120: Linear Programming and Combinatorial Optimization’
and so on. I have always been fascinated by the modelling of real-world problems with
probability which I learned in ‘CS6046: Multi-armed Bandits’, ‘AM5340: Stochastic
Processes in Mechanics’ and ‘MA5018: Stochastic Calculus for Finance’. I built a small
application to generate the best possible guess for the Wordle using entropy and information
theory. In the meantime, I have been involved in building some projects/ applications such
as visualizing graph path-finding algorithms (link), sorting algorithms (link); developing a
surrogate model with polynomial chaos expansion to characterise the highly nonlinear noisy
system of lake eutrophication (link); building a content-based recommendation system (link)
and modelling the effect of homophily (link) and so on.

• How this proposal came into the picture?
It was around September 2023, while verifying some results of the ongoing paper (through
some program) we strongly felt that SageMath lacks a complete world of graph theory that
are dedicated to the theory of matching covered graphs. I have been using SageMath for quite
a lot of projects (for instance — in course projects for ‘ID2090: Introduction to Scientific
Computation’ by Prof. Gandham Phanikumar, and the above-mentioned course AM5340).
It will be a wonderful opportunity for me to pay my gratitude to SageMath by developing
the fascinating things in graph theory that I am currently working on. Recently, in February
2024, I started contributing to SageMath starting with fixing the documentation of recursively
enumerated sets.

• My System:
I have been using Ubuntu 20.04 LTS since I attended the course Introduction to Scientific
Computing in my second semester. I am free to customize the local system as required for
technical development.

5 Availibility
I anticipate being able to allocate approximately seven hours per week throughout the duration of the
semester until May 12th. Following the conclusion of my end-semester examinations on May 12th, I will
be fully available to dedicate all of my time to GSOC without any additional commitments.

6 Milestones and Deliverables
This section throws light on the milestones and deliverables that we plan to achieve.

1. During the bonding time I shall raise relevant issues, fix existing bugs, help to merge pending PRs,
close issues, and create milestones on the GitHub Project. Furthermore, I shall discuss with the
mentor the roadmap and finalize the plan of action.
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2. Coming to the proposal and programming phases, the entire proposal can be narrowed down to four
parts (from an implementation point of view):

(a) The basic parts — this includes the chapters PERFECT MATCHING AND MATCHING COVERED
GRAPHS, BARRIERS AND CANONICAL PARTITIONS, NOTABLE FAMILIES OF BRICKS AND
BRACES except the implementation of ‘Micali-Vazirani Algorithm’, as it is independent
to each of the other methods. I am looking forward to adding these methods and related
documentation at the beginning.

(b) The tight cut decomposition and dependency relation — this includes the chapters TIGHT
CUTS, BRICKS AND BRACES, DEPENDENCE RELATION AND REMOVABLE CLASSES.
One point to note here is that the major methods to implement are — is_brick() and
is_brace(); the remaining methods can be implemented using a very slight modification
of a subroutine used in both is_bicritical() and is_matching_covered() known as
𝑀-alternating path search method.

(c) The remaining phase shall deal with the modules of EAR DECOMPOSITION and BRICK AND
BRACE GENERATION and implementing ‘Micali-Vazirani Algorithm’.

(d) Also, it might be noted that we need to add suitable examples to the documentation for each
of the aforementioned methods.

PS — This division may be treated as checkpoints and milestones to be marked.

7 Future Scope
The theory of matching in graph theory has numerous applications, with one particularly fascinating
area being the theory of Pfaffian orientations. Within this realm, several intriguing results have been
discovered, as highlighted in [19]:

1. Identifying the characteristic orientation of a graph 𝐺.
2. Validating an orientation.
3. Efficiently recognizing Pfaffian bipartite graphs.
4. Efficiently recognizing Pfaffian near-bipartite graphs, and so on.

In matching theory, there are the concepts of matching minors and conformal minors (analogous to the
minor and topological minor in the study of planarity in graph theory) that lead to the primary ear
decomposition of a matching covered graph; there are the fascinating notations of geometric objects
known as perfect matching polytopes, that play an important role in results related to solid bricks and
many more. Also, on the other side of the spectrum of matching theory, algorithms concerning matching
under preferences pop up. In the future, I am looking forward to implementing the algorithms related to
these topics in SageMath :)
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